
A constraint-based pattern
mining algorithm and its

optimisation for multicore
systems

Sofya Titarenko, Valeriy Titarenko, Georgios Aivaliotis, Jan Palczewski

EMiT 2019

What is pattern mining?

We can mine for interesting patterns, co-occurring patterns,
frequent patterns, etc…

A frequent pattern is a set of events which are met often
1 3 4
2 3 5
1 2 3 5
2 5
1 2 3 5

1 2 met twice
Eg. datasets of transactions in supermarkets, road accidents,
bioinformatics, environmental, health records, etc..

Why do we mine for frequent patterns?

We often use found frequent patterns for the future analysis: clustering,
building predictive models, classification, etc..

Challenges in frequent pattern mining

Storage Space

Computational time

However…

We want to solve our problem in real-time.

We want to keep it running on stand-alone workstation.

Ex: making a medical decision

Ex: working with
sensitive datasets

Challenges in frequent pattern mining

Taking time into account

Allowing for uncertainty in datasets

Additional constraints: item-based, temporal, etc..

Ex. Internet queries, medical monitoring, environmental monitoring etc..

Human error, faults in sensors, sampling errors, etc..

Interested only in the patterns of a particular length
Patterns formed only from the events belonging to different categories

More complexity,
longer time, data
storage challenge!

Challenges in frequent pattern mining
Time and uncertainty in time-points

Time-series Adding uncertainty

Challenges in frequent pattern mining
Temporal and item-based constraints

3 5 met once

1 4
2 3 5
1 2 3 5
2 5
1 2 3 5

1 2 met twice

Pattern is allowed to be no longer
than a certain time period

Ex: medical records

Pattern is allowed to contain only
items from different groups

Ex: weather dataset

LDN, T BLN, T

t

Munich London Berlin

MUC, T LDN, T

MUC, T LDN, T LDN, T LDN, T

Our algorithm FARPAM

Defines patterns to accommodate
uncertainty, temporal and item-based
constraints

Optimises calculations to be fast
and efficient on a standalone
multicore workstation

Steps for optimisation

Making storage more efficient

1.Clean dataset
2.“Pack” integers in a “smaller” storage space. Example:

use 8 bit chars instead of 16/32/64 bit integers.
3.For binary vectors pack all the information in 32 bit.

Improving processing time

1.Use of bitmap vectors and therefore binary logic
operators (for ex. ADD)

2.Use multithreading and vectorisation wherever possible
3.Use caching memory strategy
4.Clean dataset
5.Store events in a “clever” way

Steps for optimisation

FARPAM compared with FARPAMp

FARPAMp includes prior information:
• Specifically, the duration of

uncertainty intervals is the same for
all events of a certain type.

• The algorhithm could be modified
for other prior constraints

support No. pat apriori apriori+opt SPAM FARPAM FARPAMp

0.5 8332 120.1 18.7 14.7 1.19 1.21

0.4 46848 5942.1 51.9 50.4 3.66 3.87

0.3 157536 7519.8 120.4 219.4 7.8 7.85

Optimisation Results
Weather dataset, no uncertainty. Daily measurements over few years, 25 European cities

~20 times faster than SPAM without uncertainty 810 records, 910,387 eventsTimes are in seconds

(Adult social care dataset, with uncertainty)

support robustSpam Apriori Apriori+omp FARPAM FARPAMp

0.1 715.9 20.9 2.3 0.74 0.4

0.05 2370.7 91.7 8.1 1.06 1.05

0.03 5984.1 256.3 14.1 1.66 1.58

0.02 13045.1 602.2 26.8 2.3 1.88

Only for pattern length [3,5]

Optimisation Results

~6000 times faster than robustSPAM with uncertainty

18,518 records, 304,719 events

Optimisation approaches

A B C B A A D B C A Devents

times t1s, t1e t2s, t2e t3s, t3e…

A B C D

times t1s, t1e t2s, t2e t3s, t3e…

events
No. of unique events 4 3 2 2

Optimisation approaches

Optimisation approachesOpenMP

Conclusions
1. When working with Big Data it is very important to use

storage space carefully;
2. Algorithmic and hardware optimisation allows reduction

in storage space and considerably reduces calculative
time;

3. Good algorithmic formulation allows flexibility in
applications and makes possible future algorithmic
modifications and extensions easier.

4. Use of prior knowledge can significantly speed up
calculations

Challenges

1. Datasets

Storage problem

Time problem

2. Constraints, uncertainty or
additional information we want to
keep….

Problems:
1. Weather dataset (810 records, 910,387 events)
2. LCC (18,518 records, 304,719 events)

Example:
1. suppose we found 2,000,000 of patterns with max

length ~50. We need ~0.4 GB of memory
2. We want to accelerate problem using ID list

approach. Suppose for problem 1. we have
~20,000 records. Then we need extra ~320GB

If no uncertainty (weather example)

sup N
pat

apri
ori

apri
ori+
opt

SPA
M

Alg1 Alg2

0.5 8332 120.1 18.7 14.7 1.19 1.21

0.4 46848 5942.1 51.9 50.4 3.66 3.87

0.3 157536 7519.8 120.4 219.4 7.8 7.85

Assuming that there’s no coinciding events

+uncertainty (LCC example)

sup robust
Spam

Apriori Apriori
+omp

Alg1 Alg2

0.1 715.9 20.9 2.3 0.74 0.4

0.05 2370.7 91.7 8.1 1.06 1.05

0.03 5984.1 256.3 14.1 1.66 1.58

0.02 13045.1 602.2 26.8 2.3 1.88

Only for length [3,5]

Sofya Titarenko, Valeriy Titarenko, George Aivaliotis, Jan
Palczewski, “Fast implementation of pattern mining
algorithms with time stamp uncertainties and temporal
constraints”, to submit in journal of Big Data

The problem we solve

1. Reformulated pattern definition so to accommodate few types of pattern mining (itemset mining, time
series mining, SPAM with sequences=1, time series with time uncertainty)

2. Cleaned dataset from the events which are not frequent

3. Store database in the following way: Dataset with only unique events for record, number of unique
events, Dataset of times

4. Use of ID lists for frequent patterns. All ID lists are compressed in bitmap. When working with them we
apply binary logic operators when it is possible

5. Check if pattern is frequent only if:
• All its subpatterns of length (n-1) are frequent
• Sup of the resultant logical multiplication of ID vectors is above min support value
• Check the corresponding entry only its binary value equals 1

6. Use the following property:
Suppose uncertainty interval is the same for alike events. If the interval starts earlier for the first event,
then it also finishes earlier

7. Multithreading, vectorisation

The problem we solve

3. Store database in the following way: Dataset with only unique events for record, number of unique
events, Dataset of times

A B C Drecord Proposed way

A B C B A A D B C A D
record

Classical wayevents

times t1s, t1e t2s, t2e t3s, t3e…

events

N of unique events 4 3 2 2

times t1s, t1e t2s, t2e t3s, t3e…

Advantages:
1. Dataset become more compact
2. Searching for pattern function works faster

The problem we solve

Classical way

Proposed way

4. Use of ID lists for frequent patterns. All ID lists are compressed in bitmap. When working with them we
apply binary logic operators when it is possible

1 vector for 16 records!

16 vectors for 16 records!

If no uncertainty (weather example)

sup N pat apriori apriori
+opt

SPAM Alg1 Alg2

0.5 8332 120.1 18.7 14.7 1.19 1.21

0.4 46848 5942.1 51.9 50.4 3.66 3.87

0.3 157536 7519.8 120.4 219.4 7.8 7.85

Assuming that there’s no coinciding events

+uncertainty (LCC example)

sup robust
Spam

Apriori Apriori
+omp

Alg1 Alg2

0.1 715.9 20.9 2.3 0.74 0.4

0.05 2370.7 91.7 8.1 1.06 1.05

0.03 5984.1 256.3 14.1 1.66 1.58

0.02 13045.1 602.2 26.8 2.3 1.88

Only for length [3,5]

The proposed algorithms (Alg1 and Alg2) work up to ~30
times faster then open source code SPAM and ~7,000 times
faster then previously developed robustSPAM

