



# Comparison of deep neural network approach in text and image classification using CPU and GPU systems

Abdul Wahab, Violeta Holmes







#### **Motivation:**

- Huge amount of data generated by computing devices.
- Hardware and software improvement.
- GPU computing.
- Framework for computation.
- New techniques in Al.





### **Aims and Objectives:**

- Investigate the performance of DL on CPU and GPU.
- Use TensorFlow framework to build and train deep learning models.
- Evaluate these systems in typical data classification and identification tasks.
  - Text classification using IMDB (Internet Movie Database) dataset
  - Image recognition using Fashion MNIST dataset







Relation between AI, ML & DL:

- Artificial Intelligence
- Machine Learning
- Deep Learning



Figure 1: Relation between AI,ML & DL







#### **Convolution Neural Networks:**

- Convolution Neural Networks is key type of Artificial Neural Network.
- Key concepts are Local Receptive Fields, Activation and Pooling and Fully Connected Layer.



Figure 2: CNN architecture (Source: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53)







#### Framework and Toolkits:

#### TensorFlow

- Python, and easy configuration.
- Excellent tutorials.

#### Anaconda Navigator

- Graphical interface.
- Supports CPU/GPU without using terminal window.

#### Jupyter Notebook

- Web-based interactive development environment.
- Supports multiple languages.







### **Hardware for Deep Learning:**

- Stand-alone machine
  - Laptop core i7.
  - 12 GB RAM.
  - NVIDIA graphic card 940M.
  - 250 GB SSD hard drive.









# Setting environment for DL on a stand-alone machine:

- CUDA 9.0
- CuDNN 7.0
- Setting environment
- Python 3.6
- TensorFlow CPU/GPU
- Anaconda
- Validation









## Text classification using IMDB dataset:

- IMDB dataset of 50,000.
- 2 part of dataset positive and negative reviews.
- Sentimental analysis.
- Accuracy of 86%.





# Image recognition using Fashion MINST dataset:

- Dataset of 70,000.
- 60,000 of training dataset.
- 10,000 of test dataset.
- Grayscale images of size 28\*28.
- Accuracy of 88%







### **Results and Analysis:**



Figure 3: Accuracy vs Epoch on GPU-CPU training and validation of dataset in text classification



Figure 4: Accuracy vs Epoch on GPU-CPU training of dataset in Fashion MNIST dataset







#### **Results and Analysis:**



Figure 5: Time/Accuracy/Epoch graph for GPU-CPU text classification



Figure 6: Time/Accuracy/Epoch graph for GPU-CPU Fashion MNIST dataset classification







#### Conclusion and future work:

- Setting the environment for deep learning.
- Text classification
- Image recognition.
- Compared the results of CPU/GPU by increasing epochs.
- Compared the time and accuracy CPU/GPU for both cases.
- GPU processing time is moderately better than CPU.
- Extend our investigation with powerful GPU and TPU.







### Questions

