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What is TELEMAC-MASCARET?

TELEMAC-MASCARET is an open-source suite of hydrodynamic solvers
for free-surface flow modelling.

It was originally developed by Electricité de France (EDF) in the 1990s
and is now developed through the TELEMAC-MASCARET consortium:

e Artelia

o BAW alloat
e CEREMA .
e CERFACS

e UKRI-STFC, Daresbury g “
Laboratory l \

e EDF Courtesy of the official TELEMAC-MASCARET website.

e HR Wallingford



What is TELEMAC-MASCARET?

e TELEMAC-MASCARET is only parallelized with MPI

e Which is usefull when HPC clusters are made of single core processor
e But HPC clusters have more and more core per processor

e The compute nodes also have more and more GPUs

e Then in order to let TELEMAC-MASCARET use the full computing
power of tommorrow's cluster, it is needed to search for new way of
adding parallelism



Computing used

OpenPOWER archtecture in a
nutshell:

e IBM POWER processors

e NVIDIA GPUs

K i
o NV| D|A NVLInk The machine used for this work, Paragon

In our case, each node of the machine used consists of:

e Two IBM POWER 8 processors, with 8 cores each

e Each core has simultaneous multithreading (SMT) capability

e In this case the cores are able to run either 1 threads (SMT1), 2
threads (SMT2), 4 threads (SMT4) or 8 threads (SMT8) at the
same time

e Four NVIDIA P100 GPUs

e NVIDIA NVLink for GRU-GPU and GPU-CPU interconnections



The test case

Test case used: tomawac/fetch_limited /tom _test6.cas

e This is a limited test with a small mesh: 18k elements, 9.6k points.
e It spends all of its time in a single fortran function: gnlin3.f

e This function was reported to be a bottleneck by some users during
the annual TELEMAC User Conference (2018).



time with MPI (IBM compiler)

1400

1200

1000 +*

800

600

400

Execution time in seconds

200

1 node 2 nodes 4 nodes 8 nodes

Number of nodes

== SMT 1 === SMT 2 SMT 4



MPI+OpenMP (IBM compiler) on CPU

We can already use the simultaneous multithreading for MPI
parallelization.
But would it be better to use it for OpenMP parallelization?

e create and initialise array for reduction
e !$Somp parallel do reduction(+:tmp_array)
e do loop

e do loop

° do loop

° do loop

. tmp_array(x,y,z) = tmp_array(x,y,z) + k
[ ]

e !$omp end parallel do

e array — array + tmp_array



MPI+4+OpenMP (IBM compiler)
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MPI14+0OpenACC (PGI compiler) on GPU

Move data to GPU and execute the loop on it.

e !$acc data copy(array)

e !$acc parallel loop collapse(4)

e do loop
° do loop
° do loop

e !$acc atomic
° array(x,y,z) = array(x,y,z) + k
e ...

e !$acc end data

Elsewhere during the initialisation of the code, we have linked each MPI
task to a specific GPU.



MPI14+0OpenACC (PGI compiler) on GPU
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MPI+OpenMP (IBM compiler) on GPU

Move data to GPU and execute the loop on it.

e !$omp target data map(array)

e !$omp target teams distribute parallel do collapse(4)

e do loop
° do loop
° do loop

e !$Somp atomic

° array(x,y,z) = array(x,y,z) + k
o ..

e !$omp end target data

Elsewhere during the initialisation of the code, we have linked each MPI
task to a specific GPU.
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MPI+OpenMP (IBM compiler) on GPU
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MPI+OpenMP (IBM compiler) VS MPI+0OpenACC (PGI com-

piler)
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Conclusion

Results achieved:

e No improvement when using SMT with OpenMP
e Good improvement when using GPU

e Between 4.8 and 7.3 speedup with OpenACC

e Between 3 and 4.1 speedup with OpenMP

Technical advices:

e PGl compiler is helpful and gives informative messages about how
the compiler translates the OpenACC directives

e The nvprof profiler is able to profile the OpenACC code, which lets
you efficiently visualize when data transfers occur

e We have been unable to use it with OpenMP code
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e Offloading more parts of TELEMAC-MASCARET to GPU

e Keeping track of the enhancements of OpenACC and OpenMP
implementations across different compilers

e Producing increasingly large simulation meshes and proving better
convergence, provided by higher resolutions, enabled by faster
processing
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