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What is TELEMAC–MASCARET?

TELEMAC–MASCARET is an open-source suite of hydrodynamic solvers

for free-surface flow modelling.

It was originally developed by Électricité de France (EDF) in the 1990s

and is now developed through the TELEMAC–MASCARET consortium:

• Artelia

• BAW

• CEREMA

• CERFACS

• UKRI–STFC, Daresbury

Laboratory

• EDF

• HR Wallingford

Courtesy of the official TELEMAC–MASCARET website.
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What is TELEMAC–MASCARET?

• TELEMAC–MASCARET is only parallelized with MPI

• Which is usefull when HPC clusters are made of single core processor

• But HPC clusters have more and more core per processor

• The compute nodes also have more and more GPUs

• Then in order to let TELEMAC–MASCARET use the full computing

power of tommorrow’s cluster, it is needed to search for new way of

adding parallelism
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Computing used

OpenPOWER archtecture in a

nutshell:

• IBM POWER processors

• NVIDIA GPUs

• NVIDIA NVLink The machine used for this work, Paragon

In our case, each node of the machine used consists of:

• Two IBM POWER 8 processors, with 8 cores each

• Each core has simultaneous multithreading (SMT) capability

• In this case the cores are able to run either 1 threads (SMT1), 2

threads (SMT2), 4 threads (SMT4) or 8 threads (SMT8) at the

same time

• Four NVIDIA P100 GPUs

• NVIDIA NVLink for GPU–GPU and GPU–CPU interconnections
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The test case

Test case used: tomawac/fetch limited/tom test6.cas

• This is a limited test with a small mesh: 18k elements, 9.6k points.

• It spends all of its time in a single fortran function: qnlin3.f

• This function was reported to be a bottleneck by some users during

the annual TELEMAC User Conference (2018).
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Original execution time with MPI (IBM compiler)
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MPI+OpenMP (IBM compiler) on CPU

We can already use the simultaneous multithreading for MPI

parallelization.

But would it be better to use it for OpenMP parallelization?

• create and initialise array for reduction

• !$omp parallel do reduction(+:tmp array)

• do loop

• do loop

• do loop

• do loop

• tmp array(x,y,z) = tmp array(x,y,z) + k

• ...

• !$omp end parallel do

• array = array + tmp array
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MPI+OpenMP (IBM compiler)
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MPI+OpenACC (PGI compiler) on GPU

Move data to GPU and execute the loop on it.

• !$acc data copy(array)

• !$acc parallel loop collapse(4)

• do loop

• do loop

• do loop

• !$acc atomic

• array(x,y,z) = array(x,y,z) + k

• ...

• !$acc end data

Elsewhere during the initialisation of the code, we have linked each MPI

task to a specific GPU.
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MPI+OpenACC (PGI compiler) on GPU
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MPI+OpenMP (IBM compiler) on GPU

Move data to GPU and execute the loop on it.

• !$omp target data map(array)

• !$omp target teams distribute parallel do collapse(4)

• do loop

• do loop

• do loop

• !$omp atomic

• array(x,y,z) = array(x,y,z) + k

• ...

• !$omp end target data

Elsewhere during the initialisation of the code, we have linked each MPI

task to a specific GPU.
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MPI+OpenMP (IBM compiler) on GPU
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MPI+OpenMP (IBM compiler) VS MPI+OpenACC (PGI com-

piler)
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Conclusion

Results achieved:

• No improvement when using SMT with OpenMP

• Good improvement when using GPU

• Between 4.8 and 7.3 speedup with OpenACC

• Between 3 and 4.1 speedup with OpenMP

Technical advices:

• PGI compiler is helpful and gives informative messages about how

the compiler translates the OpenACC directives

• The nvprof profiler is able to profile the OpenACC code, which lets

you efficiently visualize when data transfers occur

• We have been unable to use it with OpenMP code
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Future work

• Offloading more parts of TELEMAC–MASCARET to GPU

• Keeping track of the enhancements of OpenACC and OpenMP

implementations across different compilers

• Producing increasingly large simulation meshes and proving better

convergence, provided by higher resolutions, enabled by faster

processing
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