Q Science & Technology
@ Facilities Council

UK Research &=
and Innovation 9N
DF

Porting and Optimising
TELEMAC-MASCARET for the
OpenPOWER Ecosystem

EMIT 2019, 9th-11th April, Huddersfield, UK

Judicaél Grasset(1), Yoann Audouin(2), Stephen Longshaw(1),
Charles Moulinec(1), David R. Emerson(1)

2019-04-10

(1) STFC, Daresbury Laboratory, Warrington, United Kingdom
(2) EDF R&D, Chatou, France

What is TELEMAC-MASCARET?

TELEMAC-MASCARET is an open-source suite of hydrodynamic solvers
for free-surface flow modelling.

It was originally developed by Electricité de France (EDF) in the 1990s
and is now developed through the TELEMAC-MASCARET consortium:

e Artelia

o BAW alloat
e CEREMA .
e CERFACS

e UKRI-STFC, Daresbury g “
Laboratory l \

e EDF Courtesy of the official TELEMAC-MASCARET website.

e HR Wallingford

What is TELEMAC-MASCARET?

e TELEMAC-MASCARET is only parallelized with MPI

e Which is usefull when HPC clusters are made of single core processor
e But HPC clusters have more and more core per processor

e The compute nodes also have more and more GPUs

e Then in order to let TELEMAC-MASCARET use the full computing
power of tommorrow's cluster, it is needed to search for new way of
adding parallelism

Computing used

OpenPOWER archtecture in a
nutshell:

e IBM POWER processors

e NVIDIA GPUs

K i
o NV| D|A NVLInk The machine used for this work, Paragon

In our case, each node of the machine used consists of:

e Two IBM POWER 8 processors, with 8 cores each

e Each core has simultaneous multithreading (SMT) capability

e In this case the cores are able to run either 1 threads (SMT1), 2
threads (SMT2), 4 threads (SMT4) or 8 threads (SMT8) at the
same time

e Four NVIDIA P100 GPUs

e NVIDIA NVLink for GRU-GPU and GPU-CPU interconnections

The test case

Test case used: tomawac/fetch_limited /tom _test6.cas

e This is a limited test with a small mesh: 18k elements, 9.6k points.
e It spends all of its time in a single fortran function: gnlin3.f

e This function was reported to be a bottleneck by some users during
the annual TELEMAC User Conference (2018).

time with MPI (IBM compiler)

1400

1200

1000 +*

800

600

400

Execution time in seconds

200

1 node 2 nodes 4 nodes 8 nodes

Number of nodes

== SMT 1 === SMT 2 SMT 4

MPI+OpenMP (IBM compiler) on CPU

We can already use the simultaneous multithreading for MPI
parallelization.
But would it be better to use it for OpenMP parallelization?

e create and initialise array for reduction
e !$Somp parallel do reduction(+:tmp_array)
e do loop

e do loop

° do loop

° do loop

. tmp_array(x,y,z) = tmp_array(x,y,z) + k
[]

e !$omp end parallel do

e array — array + tmp_array

MPI+4+OpenMP (IBM compiler)

Execution time in seconds

1600
=— MPI:SMT 1

== MPI:SMT 2

MPI:SMT 4
== MPI+OpenMP:SMT 2
=»— MPI+OpenMP:SMT 4

1400

1200

1000 **

800

600

400

200

1 node 2 nodes 4 nodes 8 nodes

MPI14+0OpenACC (PGI compiler) on GPU

Move data to GPU and execute the loop on it.

e !$acc data copy(array)

e !$acc parallel loop collapse(4)

e do loop
° do loop
° do loop

e !$acc atomic
° array(x,y,z) = array(x,y,z) + k
e ...

e !$acc end data

Elsewhere during the initialisation of the code, we have linked each MPI
task to a specific GPU.

MPI14+0OpenACC (PGI compiler) on GPU

Execution time in seconds

900
800
700
600
500
400
300
200

100 \

\ g

L 4
2

0 —t
1 node 2 nodes 4 nodes 8 nodes

Number of nodes

=@ Best original MP| ==e= MPI+OpenACC

MPI+OpenMP (IBM compiler) on GPU

Move data to GPU and execute the loop on it.

e !$omp target data map(array)

e !$omp target teams distribute parallel do collapse(4)

e do loop
° do loop
° do loop

e !$Somp atomic

° array(x,y,z) = array(x,y,z) + k
o ..

e !$omp end target data

Elsewhere during the initialisation of the code, we have linked each MPI
task to a specific GPU.

10

MPI+OpenMP (IBM compiler) on GPU

1200
1000
1%2]
he)
c
S 800
b
£
o 600
£
=
S 400
3
£
w200
o ¢ o
1 node 2 nodes 4 nodes 8 nodes

Number of nodes

=@ Best original MP| === MPI|+OpenMP

11

MPI+OpenMP (IBM compiler) VS MPI+0OpenACC (PGI com-

piler)

1000 —#— Best original MPI (IBM)
—4— Best original MPI (PGI)
MPI+OpenMP(IBM)

—4— MPI+OpenACC (PGI)

900
800
700
600
500
400
300

Execution time in seconds

200

100 \

0 y
1 node 2 nodes 4 nodes 8 nodes

Number of nodes

12

Conclusion

Results achieved:

e No improvement when using SMT with OpenMP
e Good improvement when using GPU

e Between 4.8 and 7.3 speedup with OpenACC

e Between 3 and 4.1 speedup with OpenMP

Technical advices:

e PGl compiler is helpful and gives informative messages about how
the compiler translates the OpenACC directives

e The nvprof profiler is able to profile the OpenACC code, which lets
you efficiently visualize when data transfers occur

e We have been unable to use it with OpenMP code

13

e Offloading more parts of TELEMAC-MASCARET to GPU

e Keeping track of the enhancements of OpenACC and OpenMP
implementations across different compilers

e Producing increasingly large simulation meshes and proving better
convergence, provided by higher resolutions, enabled by faster
processing

14

Acknowledgements

e This work is supported by the Hartree Centre through the Innovation
Return on Research (IROR) programme.

& Science & Technology Facilities Council
= ocientific Computing Department

UK Research L iy
and Innovation 9N

Science & Technology
@ Facilities Council

& Hartree Centre

Science & Technology Facilities Council

Contact:
judicael.grasset@stfc.ac.uk

15

mailto:judicael.grasset@stfc.ac.uk

