
© 2019 EuroEXA and Consortia Member Rights Holders
Project ID: 754337

Mike Ashworth, Graham Riley, Andrew Attwood and John Mawer

Advanced Processor Technologies Group

School of Computer Science,

University of Manchester, United Kingdom

mike.ashworth.compsci@manchester.ac.uk

Prospects for Low-power Acceleration of
HPC Workloads in EuroExa:

FPGA Acceleration of a Numerical Weather
Forecast Code

Project outline

© 2019 EuroEXA and Consortia Member Rights Holders
Project ID: 754337

Horizon 2020 FETHPC-01-2016:

Co-design of HPC systems and applications
EuroExa started 1st Sep 2017, runs for 3½ years
16 Partners, 8 countries, €20M
Builds on previous projects, esp. ExaNoDe, ExaNeSt, EcoScale

Aim: design, build, test and evaluate an Exascale prototype
Architecture based on ARM CPUs with FPGA accelerators
Three testbed systems: #3 will deliver 2-3 Pflop/s peak
Scalable to 400 Pflop/s at high Gflop/s/W
Low-power design goal to target realistic Exascale system
Architecture evolves in response to application requirements

= co-design

Wide range of apps, incl. weather forecasting, lattice Boltzmann, multiphysics, astrophysics,
astronomy data processing, quantum chemistry, life sciences and bioinformatics

Kick-off meeting 4th-5th Sep 2017,

Barcelona

@euroexa

euroexa.eu

Motivation

• FPGAs offer large (OsOM) gains in performance/W

• Also gains in performance/{$£€ }

• Major corporations are using FPGAs in datacentres
for cloud services, analytics, communication, etc.

• H/W traditionally led by Xilinx (ARM CPU + FPGA single chip)

• Intel’s acquisition of Altera led to Heterogeneous
Architecture Research Platform (HARP) (also single chip)

• Predictions: up to 30% of datacenter servers will
have FPGAs by 2020

LFRic Weather and Climate Model

Brand new weather and climate model: LFRic
named after Lewis Fry Richardson (1881-1953)

• Dynamics from the GungHo project 2011-2015

• Scalability – globally uniform grid (no poles)

• Speed – maintain performance at high & low
resolution and for high & low core counts

• Accuracy – need to maintain standing of the model

• Separation of Concerns – PSyClone generated layer
for automated targeting of architectures

• Operational weather forecasts around 2022 –
anniversary of Richardson (1922)

Globally

Uniform

Next

Generation

Highly

Optimized

“Working together

harmoniously”

LFRic profile & call graph

• Baroclinic performance benchmark case

• gprof ... | gprof2dot.py | dot ...

• Two subroutines in the Helmholtz solver use 54% of runtime

• Most is in matrix-vector products within a loop over vertical levels

Zynq UltraScale+ ZCU102
Evaluation Platform

• ARM Cortex A53
quad-core CPU 1.2
GHz

• Dual-core Cortex-R5
real-time processor

• Mali-400 MP2 GPU

• Zynq UltraScale
XCZU9EG-
2FFVB1156 FPGA

Zynq UltraScale+ MPSoC EG

Range of Programming Models

1. C code with Xilinx Vivado HLS and Vivado Design Suite

2. OmpSs@FPGA directive-based (BSC)

3. MaxJ compiler for Maxeler systems

4. OpenCL code with Xilinx SDAccel

5. OpenStream (Uni Man)

• Options 2-5 being investigated by other members of the project

Starting code for Vivado HLS

#define NDF1 8

#define NDF2 6

#define NK 40

#define MVTYPE double

int matvec_8x6x40_vanilla (MVTYPE matrix[NK][NDF2][NDF1],

MVTYPE x[NDF2][NK], MVTYPE lhs[NDF1][NK]) {

int df,j,k;

for (k=0;k<NK;k++) {

for (df=0;df<NDF1;df++) {

lhs[df][k] = 0.0;

for (j=0;j<NDF2;j++) {

lhs[df][k] = lhs[df][k]

+ x[j][k]*matrix[k][j][df];

}

}

}

return 0;

}

Notes:

• Data sizes hard-wired for
HLS

• Vertical loop k is outer

• Vectors x and lhs are
sequential in k (k-last in C)

• Matrix is not (k-first)

• Read-then-write
dependence on lhs

• Flops = 2*NK*NDF1*NDF2
= 3840

• Mem refs = 2*flops = 7680
doubles

Optimizations in Vivado HLS

• Make k the inner loop (loop length 40, independent, sequential access)

• Transpose matrix to k-last to ensure sequential memory access

• HLS pragma to unroll inner loops on k (no benefit from hand unrolling)

• HLS pragma to pipeline outer loop on df

• HLS pragma for input and output arguments including
• num_read_outstanding=8

• max_read_burst_length=64

• Access input and output arguments by memcpy to local arrays to ensure
streaming of loads/stores to/from BRAM (see later)

Optimized code in Vivado HLS

#pragma HLS INTERFACE m_axi depth=128

port=matrix offset=slave bundle=bram /

num_read_outstanding=8 /

num_write_outstanding=8 /

max_read_burst_length=64 /

max_write_burst_length=64

< pragmas for m_axi interfaces for x, lhs

and s_axilite interface for return>

int df,j,k;

MVTYPE ml[NDF2][NK], xl[NDF2][NK],

ll[NDF1][NK];

memcpy (xl, x, NDF2*NK*sizeof(MVTYPE));

for (df=0;df<NDF1;df++) {

#pragma HLS PIPELINE

for (k=0;k<NK;k++) {

#pragma HLS UNROLL

ll[df][k] = 0.0;

}

memcpy (ml, matrix+df*NDF2*NK, /

NDF2*NK*sizeof(MVTYPE));

for (j=0;j<NDF2;j++) {

for (k=0;k<NK;k++) {

#pragma HLS UNROLL

ll[df][k] = ll[df][k]+
xl[j][k]*ml[j][k];

}

}

}

memcpy (lhs, ll,
NDF1*NK*sizeof(MVTYPE));

Vivado HLS Performance Estimate

Performance Estimate:

• Target 2ns clock: design
validated at 2.89ns = 346 MHz

• 2334 cycles for 3840 flops = 1.65
flops/cycle

• Overlapped dmul with dadd

• Starting code was 69841 cycles

Utilization Estimate:

• Try to maximize performance while
minimizing utilization

• Shows percentage of chip ‘real-
estate being utilized

Vivado HLS Performance Timeline

Design with 12 Matrix-Vector Blocks

Vivado DS Resource Utilization

Notes:

• Using most of the BRAM memory

• Using only 7% of DSPs

• Using around half the other logic
(LUT+FF)

ARM driver code

• Setup a two devices /dev/uio0 and /dev/uio1 – two ports on the ZynQ block

• Use mmap to map the FPGA memory into user space

• Assign pointers for each data array to location in user space

• Control loop to divide up the work into 12 “chunks” which will fit into the FPGA
BRAM memory (maximum 12 x 256kB = 3MB) (13 columns in this LFRic model)

• For each chunk:
• Assign work to one of the matrix-vector blocks
• Copy input data into BRAM
• Set the control word “registers” for the block
• Start the block by setting AP_START
• Wait for block to finish by watching AP_IDLE (opportunity for overlap)
• Copy output data from BRAM

• In practice we fill 3MB BRAM, then run all 12 matrix-vector blocks, then copy output
data back and repeat

• Check correctness and time the code

Results for 12 blocks

• Best performance 5.3 Gflop/s

• 510 Mflop/s per block => 1.53
flops/cycle (93% of HLS estimate)

• Parallel efficiency at 12 IP blocks 87%

• Clock scaling 100 to 333 MHz is 94%
efficient

• ARM Cortex A53 single core 177
Mflop/s

• ARM quad-core with OpenMP 615
Mflop/s approx.

• FPGA:ARM quad-core speed-up: 8.6x

Critical Performance Factors

Clock speed

Number of matrix-
vector blocks

Performance of single
matrix-vector block

LFRic matrix-vector
performance comparison

Hardware Matrix-
vector

performance
(Gflop/s

Peak
performance

(Gflop/s)

Percentage
peak

Price Power

ZCU102 FPGA 5.3 600 0.9% $ W

Intel Broadwell E5-
2650 v2 2.60GHz
8 cores

9.86 332.8 3.0% $$$ WWW

• FPGA performance is 54% of Broadwell single socket

• Should be scaled by price & power

Final thoughts

• Matrix-vector (MVM) vs. matrix multiply (MXM)
• For large N, MVM asymptotically approaches

computational intensity (CI) of 0.25 flops/byte
• MXM has a computational intensity of N/12, so even for

small matrices (12x12) CI is one flop/byte
• Matrix-vector is much harder than matrix-multiply

• Performance/price and performance/power
• “GPU vs FPGA Performance Comparison”, Berton White Paper

• GPU: 0.07-0.12 vs. FPGA: 0.23 €/Gflop/s/W
• GPU: 20 vs. FPGA: 70 Gflops/W
• FPGAs have a large benefit in power efficiency

Summary

We have

• Used Vivado HLS to develop a matrix-vector kernel
which runs on the UltraScale+ FPGA at 5.3 double
precision Gflop/s (single precision: similar performance, 63% resources)

Issues

• Timing constraints in the Vivado design prevent
larger numbers of blocks and higher clock speeds

• However, performance against Xeon is compelling

Future work

• Generate an IP block and driver for the LFRic code:
apply_variable_hx_kernel_code (done; HLS 1.75 flops/cycle)

• Exploit MPI within LFRic to run across multiple nodes
and multiple FPGAs (done trivially with the matrix-vector kernel)

• How many other kernels can we port to the FPGAs?

• Can we link kernels to avoid data transfer?

• When do we need to reconfigure? At what cost?

• Future hardware: now ZU9, VU9 (early 2019) and HBM
(Xilinx white paper)

© 2019 EuroEXA and Consortia Member Rights Holders
Project ID: 754337

Many thanks
Please connect at

@euroexa or euroexa.eu
Mike Ashworth, Graham Riley, Andrew Attwood and John Mawer

Advanced Processor Technologies Group

School of Computer Science,

University of Manchester, United Kingdom

mike.ashworth.compsci@manchester.ac.uk

