Prospects for Low-power Acceleration of
HPC Workloads in EuroExa:
FPGA Acceleration of a Numerical Weather
Forecast Code

Mike Ashworth, Graham Riley, Andrew Attwood and John Mawer
Advanced Processor Technologies Group
School of Computer Science,
University of Manchester, United Kingdom
mike.ashworth.compsci@manchester.ac.uk

© 2019 EuroEXA and Consortia Member Rights Holders
Project ID: 754337

EUROEXA : Project outline

FUNDED BY THE ELROFEAN UNION. * *

Horizon 2020 FETHPC-01-2016:

Co-design of HPC systems and applications @eu roexa
EuroExa started 1st Sep 2017, runs for 3% years
16 Partners, 8 countries, €20M euroexa.eu

Builds on previous projects, esp. ExaNoDe, ExaNeSt, EcoScale

Aim: design, build, test and evaluate an Exascale prototype
Architecture based on ARM CPUs with FPGA accelerators
Three testbed systems: #3 will deliver 2-3 Pflop/s peak
Scalable to 400 Pflop/s at high Gflop/s/W

Low-power design goal to target realistic Exascale system

Architecture evolves in response to application requirements
— Co-design Kick-off meeting 4th-5th Sep 2017,

Barcelona

Wide range of apps, incl. weather forecasting, lattice Boltzmann, multiphysics, astrophysics,
astronomy data processing, quantum chemistry, life sciences and bioinformatics

* X ¥

© 2019 EuroEXA and Consortia Member Rights Holders x o x

* EURO &

Project ID: 754337 »EXA«

EUROEXA : Motivation

* FPGAs offer large (OsOM) gains in performance/W
* Also gains in performance/{S£€B}

* Major corporations are using FPGAs in datacentres
for cloud services, analytics, communication, etc.

* H/W traditionally led by Xilinx (arm cpu + Frea single chip)

* Intel’s acquisition of Altera led to Heterogeneous
Architecture Research Platform (HARP) (aiso single chip)

* Predictions: up to 30% of datacenter servers will
have FPGAs by 2020

EUROEXA LFRic Weather and Climate Model

Brand new weather and climate model: LFRic

named after Lewis Fry Richardson (1881-1953) Globally
Uniform
* Dynamics from the GungHo project 2011-2015 Next
 Scalability — globally uniform grid (no poles) Generation
* Speed — maintain performance at high & low Highly
resolution and for high & low core counts Optimized
e Accuracy — need to maintain standing of the model e A
* Separation of Concerns — PSyClone generated layer 1.
for automated targeting of architectures) |
* Operational weather forecasts around 2022 — W%rgmotrﬁgﬁg;;r

anniversary of Richardson (1922)

Met Office é S @

Science & Technolog .
RESEARCH COUNCIL -

Facilities Council * x
* EURO &
«EXA

EURO : LFRic profile & call graph

FUNDED BY THE ELROPEAN UNION * *

e Baroclinic performance benchmark case

« gprof... | gprof2dot.py | dot ... -J- __ —
e

(=) __W _ -_ ,
————— W—_ _—
—-———— - - _

* Two subroutines in the Helmholtz solver use 54% of runtime
 Most is in matrix-vector products within a loop over vertical levels

34 .34%
176076288x

19.44% —
76076288 T

o, 7 +ZCU102
EURO : vnq UltraScale+ ZCU10

=== Evaluation Platform

ARM Cortex A53

quad-core CPU 1.2 - i i

GHz R gy A
Dual-core Cortex-R5

PL /0 Access

real-time processor S
Mali-400 MP2 GPU

Zyng UltraScale -
XCZ U 9 E G - DDR4 Component (PL 16-bit)

PB Switches SD Card Slot 2x Pmod 1/O + 12C PCle® Gen 2x4 slot (4 x GTR)

CAN Header

GTH SMA Rx/Tx + Ref Clock
ARM® Trace

ZUSEG (XCZU9EG-2FFVB1156E)

2FFVB1156 FPGA oy R B

DDR4 DIMM (PS 64-bit) 1 R WY . \ " (3xGTH)

System Logic Cells (K)

Power-On Switch

Memory (Mb)

12 Volt Power e

DSP Slices

Maximum 1/0 Pins

EUROEXA

FUNDED BY THE ELROPEAN LNION. * *

Processing System

Application Processing Unit
| NEON™ |

ARM®

Cortex™-A53 I— DDR4/3/3L,
‘ Floating Paint Unit ‘ LPDDR4/3
JKE | JZKE || Memory || Embedded 32164 bit wWECC
|-Cache D-Cache || Management Trace
wiParity wECC Unit Macrocell |49 3
Z56KB OCM

CCHSMMU TME L2 wiECC

Real-Time Processing Unit

Zynq UltraScale+ MPSoC EG

Graphics Processing Unit
ARM Mali™-400 MP2
]

Geometry

Processor Processor 1 2

Memory Management Unit

64KEB L2 Cache

System
Functions

| Vector Floating

ARM Paint Unit

Cortex™-R5 Memory Protection Management
Uit
128KB 32KE |-Cache || 32KE D-Cache Power
TCM wfECC WECC WIECT Management
Funchonal
Safety

Config AES

S, Multichannel DMA
Authentication,

Secure Boot
Voltage/Temp Timers,

Manitor WDT, Resets,
Clocking & Debug
TrustZone

High-Speed
Gonnectivity

' DisplayPort v1.2a

| USB 3.0

| SATA 3.1

| PCle® 1.0 /2.0

| PS-GTR

General Connectivi

GigE

Quad SPI NOR

MAND

SDieMMC

I
I
I
I
| SPI
I
I
I

Programmable Logic

System Monitor
Storage & Signal Processing

Block RAM General-Purpose 1/0

High-Performance HP /O

UliraRAM

DsP

High-Density HD /O

High-Speed Gonnectivity

Interlaken

GTH

100G EMAC

PCle Gend

* X ¥
* *
* EURO &

*EXA 4

Range of Programming Models

C code with Xilinx Vivado HLS and Vivado Design Suite
OmpSs@FPGA directive-based (BSC)

MaxJ compiler for Maxeler systems

OpenCL code with Xilinx SDAccel

OpenStream (Uni Man)

1.
2.
3.
4.
5.

e Options 2-5 being investigated by other members of the project

*x X%

EURO :

FUNDED BY THE ELROFEAN UNION. * *

Starting code for Vivado HLS

#define NDF1l 8
#define NDF2 6
#define NK 40
#define MVTYPE double
int matvec_8x6x40 _vanilla (MVTYPE matrix[NK] [NDF2] [NDF1],
MVTYPE x[NDF2] [NK], MVTYPE lhs[NDF1] [NK]) {
int df,j,k;
for (k=0;k<NK;k++) {
for (df=0;df<NDF1l;df++) {
lhs[df] [k] = 0.0;
for (j=0;j<NDF2;j++) {
lhs[df] [k] = lhs[df] [k]
+ x[j] [k]l*matrix([k] [j] [df];

}

return 0O;

Notes:

Data sizes hard-wired for
HLS

Vertical loop k is outer

Vectors x and lhs are
sequential in k (k-last in C)
Matrix is not (k-first)

Read-then-write
dependence on lhs

Flops = 2*NK*NDF1*NDF2
= 3840

Mem refs = 2*flops = 7680
doubles

EUROEXA : Optimizations in Vivado HLS

UNDED BY THE ELRCPEAN UNION Jir * *

* Make k the inner loop (loop length 40, independent, sequential access)
* Transpose matrix to k-last to ensure sequential memory access

e HLS pragma to unroll inner loops on k (no benefit from hand unrolling)

* HLS pragma to pipeline outer loop on df

e HLS pragma for input and output arguments including
* num_read_outstanding=8
* max_read_burst_length=64

* Access input and output arguments by memcpy to local arrays to ensure
streaming of loads/stores to/from BRAM (see later)

*x X%

EURO * Optimized code in Vivado HLS

FUNDED BY THE ELROFEAN UNION. * *

#pragma HLS INTERFACE m_axi depth=128 > for (k=0;k<NK;k++) {
port=matrix offset=slave bundle=bram /
#pragma HLS UNROLL

num read outstanding=8 / 11[df][k] = 0.0;
num write outstanding=8 / }
max_read burst length=64 / memcpy (ml, matrix+df*NDF2*NK, /
max write burst length=64 NDF2*NK*sizeof (MVTYPE)) ;

< pragmas for m axi interfaces for x, lhg for (j§=0;3j<NDF2;j++) {

and s_axilité_interface for return>
for (k=0;k<NK;k++) {

#pragma HLS UNROLL

11[df] [k] = 11[df] [k]+
MVTYPE ml [NDF2] [NK], x1[NDF2] [NK], x1[3j1[k]1*ml[j] [k];
11 [NDF1] [NK];

}

int df,j,k;

memcpy (x1, x, NDF2*NK*sizeof (MVTYPE)) ;

for (df=0;df<NDF1;df++) {

}

memcpy (lhs, 11,
NDF1*NK*sizeof (MVTYPE)) ;

#pragma HLS PIPELINE

*x X%

EURO » Vivado HLS Performance Estimate

FUNDED BY THE ELROFEAN UNION. * *

Performance Estimates

-] Timing (ns)
=1 Summary
Clock Target Estimated Uncertainty Utilization Estimate:
ap_clk 2.00 2.89 0.25 o _
« Try to maximize performance while
-| Latency (clock cycles) o L. . .
minimizing utilization
=] Summary
Latency Interval « Shows percentage of chip ‘real-
min| max| min| max Type estate being utilized
233423342334 2334 none
Performance Estimate: Ytllization Estimates
. . -1 Summary
* Tar_get 2ns clock: design Name BRAM_18K DSP48E FF LUT URAM
validated at 2.89ns = 346 MHz DSP - -
Expression - - o 701
» 2334 cycles for 3840 flops = 1.65 FIFO - - | -
ﬂops/cyc|e Instance 4 10 2527 2222
_ Memory 4 - 0 0
* Overlapped dmul with dadd Multiplexer - - - 4280
. Register - - 20672 - -
« Starting code was 69841 cycles Total 8 10 23199 7203 O
Available 1824 2520 548160 274080 0

Utilization (%) ~0 ~0 4 2

* EURO &
* BT ¥

EUROEXA* *} Vivado HLS Performance Timeline

FUNDED BY THE ELROPEAN LNION. * *

Current Module : matvec_8x6x40_v6

Operation\Control Step C172 C173 C174 =TS C176 C177 C178 C179 C180 C181 Cc182 C183 c184 =
331 tmp_18_0_27(dmul)
332 ml_@_38(read)
333 tmp_19 @_14(dadd)
334 tmp_18_0_28(dmul)
335 ml_@_3i1(read)
336 tmp_19_0_15(dadd)
337 tmp_18 @_29(dmul)
338 ml_@_32(read)
339 tmp_19_0_16(dadd)
340 tmp_18_0_306(dmul)
341 ml_@_33(read)
342 tmp_19 @_17(dadd)
343 tmp_18 @_31(dmul)
344 ml_8_34(read)
345 tmp_19_0_18(dadd)
346 tmp_18 @_32(dmul)
347 ml_B_35(read)
348 tmp_19_0_19(dadd)
349 tmp_18_0_33(dmul)
350 ml_@_36(read)
357" tmp_19 @_20(dadd)
352 tmp_18 @_34(dmul)
353 ml_@_37(read)
354 tmp_19_0_21(dadd)
355 tmp_18 8_35(dmul)
356 ml_@_38(read)
357 tmp_19 @_22(dadd)
358 tmp_18_0_36(dmul)

e e I L T T, W

*x X%

EURO ¢ Design with 12 Matrix-Vector Blocks

FUNDED BY THE ELROFEAN UNION. + x

Diagram ? - F el X
@ e H# X © Q S|+ = C g & o

* Designer Assistance available. Run Elock Automation

|
c—l[_J

? l:% ?
g 1 |

: [,] Il
X 1 1 [.} H
"= [/ —| .
| dk wiz o E || £
= = [R
A -

11

T E—.ﬁ Z@O\‘

HJL
| |
- !
I
5
e

[TIL

EURO

*x X%
x
-
x

FUNDED BY THE ELROFEAN UNION. * *

Vivado DS Resource Utilization

utilization 2 _O0A X%
Q = = 14 Summary I3
Hierarchy Ab
Resource Utilization Ayailable Utilization %
v CLB Logic LUT 172995 274080 63.12
F7 Muxes (=1%) LUTRAM 1141 144000 0.79
v CLB LUTs [556) FF 289214 548160 52,76
LUT as Logic { BRAM 816 912 89.47
v LUT as Memor. DSP 168 2520 6.67
LUT as Shif
10 3 328 0.91
LUT as Disi
F8 Muxes (=1%) BUFG ‘ 404 0.20
CARRYS (4%) MMCHM 1 4 25.00
~ CLB Reqgisters (53
Register as Fli
v CLB Logic Distributior T J e
v LUT as Logic (53% LUTRAMY 1%
using 05 and FF Zile]
using 05 outp BRAM -
using 0& outp DSF 1 %
v LUT as Memaory (1 o9 1% .
< LUT as Shift Re BUFG{ 1% Notes:
using 06 o MR 25% .
Lang 05 & D 1 - : e Using most of the BRAM memory
w LUT as Distribu .
Using 05 Utilization (%) * Using only 7% of DSPs

~ LUT Flip Flop Pairs
LUT-FF pairs w
LUT-FF pairs w

fully used LUT-

e Using around half the other logic

(LUT+FF)

EUROEXA : ARM driver code

FUNDED BY THE ELROFEAN UNION. * *

* Setup a two devices /dev/uio0 and /dev/uiol — two ports on the ZynQ block
e Use mmap to map the FPGA memory into user space
* Assign pointers for each data array to location in user space

* Control loop to divide up the work into 12 “chunks” which will fit into the FPGA
BRAM memory (maximum 12 x 256kB = 3MB) (13 columns in this LFRic model)
* For each chunk:
e Assign work to one of the matrix-vector blocks
Copy input data into BRAM
Set the control word “registers” for the block
Start the block by setting AP_START
Wait for block to finish by watching AP_IDLE (opportunity for overlap)
e Copy output data from BRAM

* In practice we fill 3MB BRAM, then run all 12 matrix-vector blocks, then copy output
data back and repeat

* Check correctness and time the code

EUROEXA : Results for 12 blocks

FUNDED BY THE ELROFEAN UNION. * *

=333 MHz

et
o

i E——— T L Y T R RS R - SRR

—4—100 MHz g

by
o

Best performance 5.3 Gflop/s

510 Mflop/s per block => 1.53
flops/cycle (93% of HLS estimate)

Parallel efficiency at 12 IP blocks 87%

Clock scaling 100 to 333 MHz is 94%
efficient

ARM Cortex A53 single core 177
0.0 , , , , Mflop/s

* ARM quad-core with OpenMP 615
Mflop/s approx.

* FPGA:ARM quad-core speed-up: 8.6x

Performance double-precision Gflop/s
N w
o o

=
(=]
|

Number of matrix-vector IP blockg

*x X%

EURO & Critical Performance Factors

FUNDED BY THE ELROPEAN UNION *

Diagram ? - F el X
@ a 3 ¥ o q s + ® Clu ¢ o

* Designer Assistance available. Run Elock Automatiog

Performance of single
matrix-vector block

: m m
'?. " E.

L y,

nm
X
m

[

Xl

H
H N

X

" Em
5

] T
Irs

;

: :
i (m m
£ (m m|E

[
|

I

:
I
U;

i A= =N — i
: e LI B — —
% I><I E l [l:I —l,fé Iu;; _ @ I
Clock speed [+ D = R = T —
e TN . Fal | s .
s 0 - e =
] -

== 71 Number of matrix-
vector blocks

EURG ~, LFRic matrix-vector
=== performance comparison

Hardware Matrix- Peak Percentage
vector performance peak
performance (Gflop/s)
(Gflop/s
ZCU102 FPGA 5.3 600 0.9% S wW
Intel Broadwell E5- 9.86 332.8 3.0% SSS WWW
2650 v2 2.60GHz
8 cores

* FPGA performance is 54% of Broadwell single socket
* Should be scaled by price & power

EUROEXA : Final thoughts

* Matrix-vector (MVM) vs. matrix multiply (MXM)

* For large N, MVM asymptotically approaches
computational intensity (Cl) of 0.25 flops/byte

 MXM has a computational intensity of N/12, so even for
small matrices (12x12) Cl is one flop/byte

* Matrix-vector is much harder than matrix-multiply

* Performance/price and performance/power
 “GPU vs FPGA Performance Comparison”, Berton White Paper

 GPU:0.07-0.12 VS. FPGA: 0.23 €/Gflop/s/W
* GPU: 20 VS. FPGA: 70 Gflops/W
* FPGAs have a large benefit in power efficiency

* X ¥

e
 EURO #
*EXA 4

FUNDED BY THE E

LROPEAN UNION

& Summary

We have

* Used Vivado HLS to develop a matrix-vector kernel
which runs on the UltraScale+ FPGA at 5.3 double
prECiSion GﬂOp/S (single precision: similar performance, 63% resources)

Issues

* Timing constraints in the Vivado design prevent
larger numbers of blocks and higher clock speeds

* However, performance against Xeon is compelling

FUNDED BY THE E

LROPEAN UNION

' Future work

e Generate an IP block and driver for the LFRic code:
apply _variable hx_kernel code (done; His 1.75 flops/cycle)

* Exploit MPI within LFRic to run across multiple nodes
and mU|t|p|e FPGAS (done trivially with the matrix-vector kernel)

* How many other kernels can we port to the FPGAS?
e Can we link kernels to avoid data transfer?

* When do we need to reconfigure? At what cost?
e Future hardware: now ZU9, VU9 (early 20199 and HBM

(Xilinx white paper)

Many thanks
Please connect at
@euroexa or euroexa.eu

Mike Ashworth, Graham Riley, Andrew Attwood and John Mawer
Advanced Processor Technologies Group
School of Computer Science,
University of Manchester, United Kingdom
mike.ashworth.compsci@manchester.ac.uk

© 2019 EuroEXA and Consortia Member Rights Holders * ono
Project ID: 754337 »EXA«

