
Analyzing the Impact of Parallel Programming
Models in Forthcoming CMP Architectures

Iván Pérez∗, Emilio Castillo†‡, Ramón Beivide∗, José Luis Bosque∗,
Enrique Vallejo∗, Miquel Moretó†‡, Mateo Valero†‡

∗Universidad de Cantabria †Barcelona Supercomputing Center ‡Universidad Politécnica de Catalunya

Nowadays, the design of the memory hierarchy is one of the most relevant subjects of research in Computer Architecture
because of the quickly grow of concurrent compute units in the same chip. The distribution of shared memory levels, the design
of scalable cache coherence protocols or the on-chip interconnection network (NoC) are some of the most studied topics of
this area.

In the same way, at the software layer, parallel programming models based on tasks are gathering strength to face up to
traditional ones based on threads. Easing programming, fine grain synchronization and tracking data flow dependencies are the
fundamental reasons for this change.

There are previous works that study these two programming paradigms such as [2] which compares the scalability of the
PARSEC benchmark suite for both models in real machines. None of them studies the penalties that the memory system brings
in the performance of the programing model. Therefore, the goal of this study lies in evaluate the impact of the memory system
on the programming model performance to take architectural conclusions, in particular focusing on the NoC. For this purpose,
we use the PARSEC benchmarks in their pthreads/OpenMP and OmpSs versions and a simulation environment made up by
Gem5 [1], Ruby and Garnet. This environment allow us to measure performance metrics such as execution times, memory
bandwidths, idle times, network latencies or the amount of injected traffic, for example, defining the most recent or alternative
architectures with high degree of detail.

To assess the sensitivity of the programming model to the NoC performance, we compare two network topologies: a complete
graph, that gives the most performing results of latency and throughput but far from being implementable in a chip with tens of
cores; and a mesh, which is the most common topology in up-to-date many-core processors. Figure 1 shows preliminary results
of normalized execution times of some PARSEC benchmarks. These simulations use: 64 x86 out-of-order CPUs at 2 GHz; a
first level of private caches with 32KB for instructions and 64KB for data; a second cache level shared and distribute among
cores with a size of 32MB; 16 memory controllers; a MESI coherence protocol; and the two topologies mentioned before, a
complete graph and a mesh, both operating at 1GHz. The results show differences between both programming models, with
OmpSs showing highest performance. Comparing both topologies, OmpSs presents lower sensitivities than pthreads for ferret
(28.8% and 41.5% respectively) and bodytrack (43.3% and 48.3 respectively) and slighly greater for blacksholes (10.6% and
8.8% respectively). This could mean that OmpSs is more tolerant to network performance.

blackscholes ferret bodytrack

0.5

1

1.5

N
or

m
al

iz
ed

ex
ec

ut
io

n
tim

e

Complete Graph - pthreads
Complete Graph - OmpSs

8x8 Mesh - pthreads
8x8 Mesh - OmpSs

Figure 1. Normalized execution times to Complete Graph and pthreads.

REFERENCES

[1] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna,
Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator. SIGARCH
Comput. Archit. News, 39(2):1–7, August 2011.

[2] Dimitrios Chasapis, Marc Casas, Miquel Moretó, Raul Vidal, Eduard Ayguadé, Jesús Labarta, and Mateo Valero. Parsecss: Evaluating the impact of task
parallelism in the parsec benchmark suite. ACM Trans. Archit. Code Optim., 12(4):41:1–41:22, December 2015.


