Performance Analysis of Code Domain NOMA in 5G Systems

By: Zeyad Elsaraf, University of Huddersfield

Zeyad.Elsaraf@hud.ac.uk

Outline

- Overview and Motivation
- LDS-CDMA
 - Intro. And System Model
 - Advantages and Disadvantages
- LDS-OFDM
 - Intro. And System Model
 - Advantages and Disadvantages
- SCMA
 - Intro. And System Model
 - Advantages and Disadvantages
- Test Results
 - Bit Error Rate and Outage Probability graphs
- Implementation Feasibility Comparison
- Conclusion and Future Works

5G, What and Why?

Low latency

- Self Driving Cars

Massive connectivity

Smart Homesand Cities

Faster Speeds

- Virtual Reality

Larger Capacity

HigherInterconnectivity

What is Multiple Access (MA)?

- > Techniques to serve multiple users with limited bandwidth
- Time, Frequency, Power, and Code are different domains where MA can be achieved.

Fig.1 Frequency division (Left) and Time Division (Right) Multiple Access

What is NOMA?

- Non-Orthogonal Multiple Access
 - Novel approach to spectrum sharing.
 - Explores Power Domain for user multiplexing.
 - Essential for massive user influx in 5G.

Basic NOMA System Model

Fig.4 NOMA Power Domain Multiplexing (PD-NOMA)

Types of MA

Fig.5 Breakdown of Multiple Access Techniques

LDS-CDMA

- Low-Density Spreading Code Division Multiple Access
 - Utilizes an LDS technique for signal spreading
 - LDS consists of three phases:

Signal Spreading, Zero-padding, and Interleaving

LDS-CDMA, Pros and Cons

> Advantages:

- Lower Symbol interference than conventional CDMA.
- Capable of Overloading.
- Users can be detected at comparable power levels.
- Moderate Receiver Complexity.

Disadvantages:

- High Inter-Symbol-Interference (ISI) relative to OFDM.

LDS-OFDM

- Low-Density Spreading Orthogonal Frequency Division Multiple Access
 - Same Transceiver process as LDS-CDMA
 - Added Exception of an OFDM modulator and demodulator

LDS-OFDM, Pros and Cons

> Advantages:

- Little to no ISI compared to LDS-CDMA.
- Capable of Overloading.
- Users can be detected at comparable power levels.

Disadvantages:

- Very High Receiver Complexity.

LDS-OFDM & CDMA System Model

SCMA

- Sparse Spreading Multiple Access
 - Utilizes a set of predefined Sparse Codebooks for Signal Spreading
 - Combines LDS with QAM mapping.

SCMA, Pros and Cons

> Advantages:

- Very Low ISI due to high codeword distinctiveness.
- Capable of Overloading.
- Users can be detected at comparable power levels.
- Codebooks are transparent to the receiver.

Disadvantages:

- Complex Spreading Codeword Generation.
- Complex Encoding Process.

Test Results

Feasibility Comparison

Criteria / Technique	OFDM	LDS-CDMA	LDS-OFDM	SCMA
Encoding Complexity	Low	Low	Average	Very High
Decoding Complexity	Low	Average	Average	Average
Low-SNR Performance	Very Low	Average	High	Very High
High-SNR Performance	Very High	High	High	Very High
ISI	Very Low	Average	Low	Low
Receiver Complexity	Low	Low	Very High	Average
Overall Feasibility	***	***	☆ ☆	***

Conclusions And Future Work

Conclusions:

- Every NOMA technique outperformed OFDM.
- SCMA was found to be the highest performing technique.

> Future Work:

- Managing interference in NOMA.
- Reducing receiver complexity in LDS-OFDM.
- Applying the NOMA principle to MIMO Networks.
- Investigating Energy Efficiency in NOMA systems.

Thank You for Listening

Any Questions?