
Evaluating the Maturity of

OpenFOAM Simulations on GPGPU

for Bio-fluid Applications

EMiT Conference 2016

To cite: Ahmet Duran, Senol Piskin, and Mehmet Tuncel, Evaluating the maturity of OpenFOAM simulations on GPGPU for bio-fluid

applications, Proceedings of the Emerging Technology (EMiT) Conference, pp. 11-14, Barcelona Supercomputing Center, Spain, 2-3

June 2016.

Ahmet Duran
Istanbul Technical University, Department of Mathematics

http://web.itu.edu.tr/aduran

Senol Piskin
Koc University, Department of Mechanical Engineering

Mehmet Tuncel
Istanbul Technical University, Department of Mathematics

Outline
 We deal with the computational challenges for bio-medical fluid flow simulations

and an OpenFOAM 2.2.2 solver, icoFoam, for the large matrices coming from the

simulation of blood flow in arteries on different HPC clusters

 The flow problem produced various matrices as the time advances in simulation.

 We examined the behaviour of the solvers for ill-conditioned matrices

 We compared the CPU performance of the iterative solver icoFoam and the hybrid

parallel codes (MPI+OpenMP) of a direct solver SuperLU_DIST 4.0 (Li at al. 1999,

updated 2014) at TGCC Curie (a Tier-0 system) thin nodes at CEA, France

 We compared the performance of the hybrid parallel codes of

MPI+OpenMP+CUDA versus MPI+OpenMP implementation of SuperLU_DIST 4.0

at TGCC Curie (a Tier-0 system) hybrid nodes of CPU + GPU at CEA, France

 We discuss the performance, scalability and robustness of OpenFOAM on GPGPU

cluster

 We present our results regarding the speed-up of the solvers for the large matrices

of size up to 20 million x 20 million

Challenges
 The benefits versus drawbacks of hybrid nodes

 There are tradeoffs using GPU accelerators especially for the software packages

or applications where it is not possible to fit the whole part into GPU

 While it is expected to obtain a reduced time due to the accelerator, there would be

communication over-head between the various processors and the GPU

accelerators, as well

 Therefore, it is important to obtain a feasible/optimal proportion of the tasks to MPI,

OpenMP, and CUDA/OpenCL usages in emerging CPU+GPU systems

 For example, it is not possible to do everything only in GPU for a complex

algorithm like SuperLU_DIST

 Therefore hybrid nodes like Curie hybrid nodes at CEA in France provide

opportunity

Configuration of Curie
 The Curie supercomputer offers three different kind of compute nodes: thin nodes,

super fat nodes and hybrid nodes.

 The compute nodes are connected through a QDR InfiniBand network.

 This high throughput and low latency network is used for I/O and communications

among nodes of the supercomputer.

 The topology of this InfiniBand network is a full fat tree.

 http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm

 Thin nodes for regular computation

 Partition name: standard

 CPUs: 2x 8-cores SandyBridge@2.7GHz (AVX)

 Cores/Node: 16

 Nodes: 5040

 Total cores: 80640

 RAM/Node: 64GB

 RAM/Core: 4GB

 Hybrid nodes for GPU computing and graphical usage

 Partition name: hybrid

 CPUs: 2x 4-cores Westmere-EP@2.67GHz + 2x GPU Nvidia M2090

 Cores/Node: 8

 Nodes: 144

 Total cores: 1152 (+ 288 GPU)

 RAM/Node: 24GB (+6GB GPU)

 RAM/Core: 3GB

 See http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm

Energy requirements for thin

nodes versus hybrid nodes
 A diversification of hardware solutions based on the application capability may be

needed in order to attain a good efficiency (see N. Meyer et al. 2013 and J. David

et al. 2013)

 While the compute partition of Curie thin nodes having total of 80,640 cores

consumes 2132 kW, the partition of Curie hybrid nodes having total of 288 Intel® +

288 Nvidia processors uses 108.80 kW as the total power (see TOP500

Supercomputing sites [8] and the Green500 List [9])

 The partition of Curie hybrid nodes outperforms the Curie thin nodes when the

energy efficiency is compared in terms of performance per watt and the rates of

computation are 1,010.11 MFLOPS/W and 637.43 MFLOPS/W, respectively

Main tasks of the simulation
 We achieved scaled speed-up for large matrices up to 64 million x 64 million

matrices and speed-up up to 16384 cores on Curie thin nodes (see Duran et al, J.

of Supercomputing, 2015).

 We generated a structured mesh by using blockMesh as a mesh generator tool.

 To decompose the generated mesh, we employed the decomposePar tool.

 After the decomposition, we used icoFoam as a flow simulator/solver tool.

 we examined OpenFOAM 2.2.2 "icoFoam" simulator with an iterative solver such

as diagonal incomplete LU preconditioned bi-conjugate gradient in addition to

direct solvers such as distributed SuperLU 4.0 (see [2]).

 The flow problem produced various matrices as the time advances in simulation.

 The solution of the matrices obtained after each time step can be more challenging

due to the changing structure of the matrices.

 This change may be caused by mess change or flow variable change.

 The solution time of the matrices can increases as the time advances in simulation

Flowchart of the approach

Table I. Description of matrices
N NNZ NNZ/N Origin

mC_8M 8,000,000 39,988,000 4.999 ITU Mathematics

mC_16M 16,000,000 79,984,000 4.999 ITU Mathematics

mC_6M_D 6,000,000 41,800,000 6.967 ITU Mathematics

mC_8M_D 8,000,000 55,760,000 6.970 ITU Mathematics

mC_8M_n 8,000,000 39,988,000 4.999 ITU Mathematics

mC_16M_n 16,000,000 79,984,000 4.999 ITU Mathematics

mC_20M_n 20,000,000 99,982,000 4.999 ITU Mathematics

mC_6M_n_D 6,000,000 41,780,000 6.963 ITU Mathematics

mC_8M_n_D 8,000,000 55,760,000 6.970 ITU Mathematics

mC_10M_n_D 10,000,000 69,660,000 6.966 ITU Mathematics

The matrices via simulation
 Here, the solver refers to not only linear system solver but also Navier Stokes

solver and simulator.

 The first four matrices in Table 1 are obtained at time 0.00005 (s) of the

simulation where the time step size is 0.00005 (s), as in [1] (see Duran et al, J. of

Supercomputing, 2015).

 Unlike [1], the last six matrices in Table 1 are encountered at the third time step,

at time 0.012 (s) of the simulation where the time step size is 0.004 (s).

 This is a relatively large time step size for such a very small mesh size.

 Thus, we obtained challenging ill-conditioned matrices. Almost 5 or 7 banded

sparse matrix occurs at each time step.

Thin node results

 We compared the CPU performance of the iterative solver icoFoam and the hybrid

parallel codes (MPI+OpenMP) of a direct solver SuperLU_DIST 4.0 at TGCC Curie

(a Tier-0 system) thin nodes at CEA, France

 The following figures show the wall-clock time comparisons of the solvers,

excluding the refinement time, for mC_16M_n and mC_20M_n on Curie thin

nodes, respectively

 The iterative solver with a diagonal incomplete LU preconditioned bi-conjugate

gradient outperforms the direct solver SuperLU_DIST 4.0 for the simulation

matrices

Wall-clock time comparison of the solvers for

mC_16M_n on Curie thin nodes

0

20

40

60

80

100

120

140

160

0 2000 4000 6000 8000 10000

T
im

e
 (

s
.)

Number of cores

SuperLU_DIST_4.0 MPI+OpenMP

OpenFOAM MPI only

Wall-clock time comparison of the solvers for

mC_20M_n on Curie thin nodes

0

20

40

60

80

100

120

140

160

180

200

0 2000 4000 6000 8000 10000

T
im

e
 (

s
.)

Number of cores

SuperLU_DIST_4.0 MPI+OpenMP

OpenFOAM MPI only

Hybrid node results using

MPI+OpenMP+CUDA
 We compared the performance of the hybrid parallel codes of

MPI+OpenMP+CUDA versus MPI+OpenMP implementation of SuperLU_DIST 4.0

at TGCC Curie (a Tier-0 system) hybrid nodes of CPU + GPU at CEA, France.

 Table 3 shows the performance results for the ten simulation matrices.

 For example, we observe a linear speed-up of the direct solver up to 512 cores for

both implementations for mC_20M_n on Curie hybrid nodes.

 Generally, we see that MPI+OpenMP implementation outperforms the hybrid of

MPI+OpenMP+CUDA for this set of simulation matrices due to several overheads

coming from CUDA implementation for the direct solver algorithm.

 It is not possible to put everything only in GPU for SuperLU_DIST. Therefore, the

tasks should be proportioned to MPI, OpenMP, and CUDA/OpenCL.

 In SuperLU_DIST 4.0, cuBLAS library execution is one of the most time consuming

tasks performed in GPU in order to gain from explicit parallelization.

 On the other hand, there are overheads such as data transfer on PCIe between

host and device memory (CPU and GPU) and new data structure changes related

to data packing and scattering.

Hybrid node results -

continued
 SuperLU is a complex algorithm and it is challenging to select the right combination

for better intra-node communications and inter-node communications within

CPU+GPU heterogeneous systems, under current technology limitations (see

Celebi, Duran, Tuncel and Akaydin, 2012).

 The last eight matrices in Table 3 are challenging large matrices because they are

relatively denser or ill-conditioned.

 The error labelled Error 1 occurs for small number of cores.

 We meet with an error message labelled Error 2 related to buffer size during the

factorization subroutine pdgstrf, for the hepta-diagonal matrices.

 Error 3 is a CUDA stream error related to setting cuBLAS library execution stream.

Table II. The configuration of MPI+OpenMP and

MPI+OpenMP+CUDA for the direct solver

Testbed:CURIE/ hybrid hybrid hybrid hybrid

SuperLU_DIST

version
4 4 4 4

of cores 64 256 512 1024

of processes 16 64 128 256

of threads per

process
4 4 4 4

of GPUs per

process
1 1 1 1

Table III. Wall clock times (s) of SuperLU_DIST 4.0 for

the penta-diagonal 2D problems and

hepta-diagonal 3D problems on MPI + OpenMP

versus MPI + OpenMP + CUDA implementations
Matrices / Number of cores 64 256 512 1024

mC_8M
MPI + OpenMP 99.96 34.70 28.78 37.89

MPI + OpenMP + CUDA 94.70 39.10 43.70 60.72

mC_16M
MPI + OpenMP 230.30 83.19 47.73 59.02

MPI + OpenMP + CUDA 236.83 87.23 60.00 81.41

mC_6M_D
MPI + OpenMP Error 1 260.38 296.74 239.52

MPI + OpenMP + CUDA Error 1 Error 2 254.44 257.15

mC_8M_D
MPI + OpenMP Error 1 1005.96 516.86 387.20

MPI + OpenMP + CUDA Error 1 680.25 Error 2 353.40

mC_8M_n
MPI + OpenMP 94.70 31.00 32.79 35.83

MPI + OpenMP + CUDA 70.94 38.27 Error 3 61.34

mC_16M_n
MPI + OpenMP 181.53 75.93 49.53 58.61

MPI + OpenMP + CUDA 233.22 75.58 61.42 83.61

mC_20M_n
MPI + OpenMP 266.82 122.59 60.30 69.49

MPI + OpenMP + CUDA 393.49 108.90 69.60 94.99

mC_6M_n_D
MPI + OpenMP 1178.51 409.15 248.84 211.70

MPI + OpenMP + CUDA 782.22 294.14 Error 2 222.04

mC_8M_n_D
MPI + OpenMP Error 1 948.03 533.78 386.72

MPI + OpenMP + CUDA Error 1 682.02 Error 2 349.16

mC_10M_n_D
MPI + OpenMP Error 1 877.92 465.60 373.09

MPI + OpenMP + CUDA Error 1 752.78 Error 2 Error 3

Wall-clock time of direct solver for mC_20M_n

on Curie hybrid nodes

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200

T
im

e
 (

s
.)

Number of cores

MPI + OpenMP MPI + OpenMP + CUDA

Speed-up of direct solver for mC_20M_n on

Curie hybrid nodes

0

2

4

6

8

10

12

14

16

18

0 200 400 600 800 1000 1200

S
p

e
e

d
-u

p
 n

o
rm

a
li

z
e

d
 t

o
 6

4
 c

o
re

s

Number of cores

Ideal Speed-up

MPI + OpenMP

MPI + OpenMP + CUDA

Conclusions
 We compared the CPU performance of the iterative solver icoFoam and the hybrid

parallel codes (MPI+OpenMP) of a direct solver SuperLU_DIST 4.0 at TGCC Curie

thin nodes at CEA, France.

 We observe that the iterative solver with a diagonal incomplete LU preconditioned bi-

conjugate gradient outperforms the direct solver SuperLU_DIST 4.0 for the simulation

matrices.

 We compared the performance of the hybrid parallel codes of MPI+OpenMP+CUDA

versus MPI+OpenMP implementation of SuperLU_DIST 4.0 at TGCC Curie hybrid

nodes of CPU + GPU at CEA.

 We generally notice that MPI+OpenMP implementation outperforms the hybrid of

MPI+OpenMP+CUDA for the set of simulation matrices when we consider the wall

clock times for the optimal number of cores.

Conclusions
 There are several overheads coming from CUDA implementation for the complex

direct solver algorithm.

 We met with several errors for the challenging simulation matrices.

 We believe that the technology developments in emerging CPU+GPU systems will

increase the scalability of related complex algorithms by eliminating the bottlenecks

coming from communication and right matching of system components required for

special applications

Acknowledgement

 This research was supported by the Project 2010PA2505 awarded

under the 18th Call for PRACE Preparatory Access and we

acknowledge that the results of this research have been achieved

using the PRACE Research Infrastructure resource TGCC Curie (a

modern Tier-0 system) based at CEA in France.

References
1. A. Duran, M.S. Celebi, S. Piskin, and M. Tuncel, “Scalability of OpenFOAM for bio-medical flow

simulations,” Journal of Supercomputing, 71(3), 2015, pp. 938-951.

2. X. S. Li, J. W. Demmel, J. R. Gilbert, L. Grigori, M. Shao, and I. Yamazaki, SuperLU Users' Guide,

Tech. Report UCB, Computer Science Division, University of California, Berkeley, CA, 1999,

update: 2011

3. M.S. Celebi, A. Duran, M. Tuncel and B. Akaydın, Scalable and improved SuperLU on GPU for

heterogeneous systems, PRACE (Partnership for Advanced Computing in Europe), PRACE PN:

283493, PRACE-2IP white paper, Libraries, WP 44, July 13, 2012.

4. P. Sao, R. Vuduc, and X.S. Li, “A distributed CPU-GPU sparse direct solver,” Euro-Par 2014

Parallel Processing, Lecture Notes in Computer Science vol. 8632, 2014, pp. 487-498.

5. http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm.

6. N. Meyer, M. Lawenda, et al., Best Practices for HPC Procurement and Infrastructure, PRACE-

2IP project, under Grant agreement No. RI-283493, Aug. 2013.

7. J. David, JN Richet, E. Boyer, N. Anastopoulos, G Collet, GC Verdiere, et al., Best Practice Guide

- Curie v1.17, PRACE, Nov. 2013.

8. TOP500 Supercomputing sites, http://top500.org/

9. The Green500 List, http://www.green500.org

10. OpenFOAM main site. http://www.openfoam.com

QUESTIONS COMMENTS

?

THANK YOU

