
"On the Capability and Achievable
Performance of FPGAs for HPC
Applications"
Wim Vanderbauwhede
School of Computing Science, University of Glasgow, UK



Or in other words

"How Fast Can Those FPGA Thingies
Really Go?"



Outline

I Part 1 The Promise of FPGAs for HPC
I FPGAs
I FLOPS
I Performance Model

I Part 2 How to Deliver this Promise
I Assumptions on Applications
I Computational Architecture
I Optimising the Performance

I A Matter of Programming
I Enter TyTra
I Conclusions



Part 1:
The Promise of FPGAs for HPC



High-end FPGA Board



FPGAs in a Nutshell
Field-Programmable Gate Array

I Configurable logic
I Matrix of look-up tables (LUTs) that can

be configured into any N-input logic
operation

I e.g. 2-bit LUT configured as XOR:
Address Value

00 1
01 0
10 0
00 1

I Combined with flip-flops to provide state



FPGAs in a Nutshell

I Communication fabric:
I island-style: grid of

wires with islands of
LUTS

I wires with switch boxes
I provides full connectivity

I Also dedicated on-chip
memory



FPGAs in a Nutshell
Programming

I By configuring the LUTs and their
interconnection, one can create arbitrary
circuits

I In practice, circuit description is written
in VHDL or Verilog, and converted into a
configuration file by the vendor tools

I Two major vendors: Xilinx and Altera

I Many "C-based" programming solutions
have been proposed and are
commercially available. They generate
VHDL or Verilog.

I Most recently, OpenCL is available for
FPGA programming (specific
Altera-based boards only)



The Promise

FPGAs have great potential for HPC:
I Low power consumption
I Massive amount of fine grained

parallelism (e.g. Xilinx Virtex-6 has
about 600,000 LUTs)

I Huge (TB/s) internal memory
bandwidth

I Very high power efficiency
(GFLOPS/W)



The Challenge
FPGA Computing Challenge

I Device clock speed is very low
I Many times lower than memory clock
I There is no cache
I So random memory access will kill

the performance
I Requires a very different

programming paradigm
I So, it’s hard
I But that shouldn’t stop us



Maximum Achievable Performance

The theoretical maximum computational performance is determined
by:

I Available Memory bandwidth
I Easy: read the datasheets!

I Compute Capacity
I Hard: what is the relationship between logic gates and “FLOPS”?



FLOPS?

What is a FLOP, anyway?
I Ubiquitous measure of performance for

HPC systems
I Floating-point Operations per second
I Floating-point:

I Single or double precisions?
I Number format: floating-point or

fixed-point?

I Operations:
I Which operations? Addition? Multiplication
I In fact, why floating point?
I Depends on the application



FLOPS!

FLOPS on Multicore CPUs and GPGPUs
I Fixed number of FPUs
I Historically, FP operations had higher cost

than integer operations
I Today, essentially no difference between

integer and floating-point operations
I But scientific applications perform mostly

FP operations
I Hence, FLOPS as a measure of

performance



An Aside: the GPGPU Promise

I Many papers report huge speed-ups: 20x/50x/100x/...
I And the vendors promise the world
I However, theatrical FLOPS are comparable between

same-complexity CPUs and GPGPUs:

#cores vector
size

Clock
speed
(GHz)

GFLOPS

CPU: Intel Xeon E5-2640 24 8 2.5 480
GPU: Nvidia GeForce GX480 15 32 1.4 672
CPU: AMD Opteron 6176 SE 48 4 2.3 442

GPU: Nvidia Tesla C2070 14 32 1.1 493
FPGA: GiDEL PROCStar-IV ? ? 0.2 ??

I Difference is no more than 1.5x



The GPGPU Promise (Cont’d)

I Memory bandwidth is usually higher for GPGPU:

Memory
BW

(GB/s)

CPU: Intel Xeon E5-2640 42.6
GPU: Nvidia GeForce GX480 177.4
CPU: AMD Opteron 6176 SE 42.7

GPU: Nvidia Tesla C2070 144
FPGA: GiDEL PROCStar-IV 32

I The difference is about 4.5x
I So where do the 20x/50x/100x figures come from?
I Unoptimised baselines!



FPGA Power Efficiency Model (1)

I On FPGAs, different instructions (e.g. *, +, /) consume different
amount of resources (area and time)

I FLOPS should be defined on a per-application basis
I We analyse the application code and compute the aggregated

resource requirements based on the count nOP,i and resource
utilisation rOP,i of the required operations
rapp = ∑Ninstrs

i=1 nOP,i rOP,i
I We take into account an area overhead ε for control logic, I/O etc.

I Combined with the available resources on the board rFPGA, the
clock speed fFPGA and the power consumption PFPGA, we can
compute the power efficiency:
Power Efficiency=(1− ε)(rFGPA/rapp)/fFPGA/PFPGA GFLOPS/W



FPGA Power Efficiency Model (2)

Example: convection kernel from the FLEXPART Lagrangian particle
dispersion simulator

I About 600 lines of Fortran 77
I This would be a typical kernel for e.g. OpenCL or CUDA on a

GPU
I Assuming a GiDEL PROCStar-IV board, PFPGA = 30W
I Assume ε = 0.5 (50% overhead, conservative) and clock speed

fFPGA = 175MHz (again, conservative)
I Resulting power efficiency: 30 GFLOPS/W
I By comparison: Tesla C2075 GPU: 4.5 GFLOPS/W
I If we only did multiplications and similar operations, it would be 15

GFLOPS/W
I If we only did additions and similar operations, it would be 225

GFLOPS/W

I Depending on the application, the power efficiency can be up to
50x better on FPGA!



Conclusion of Part 1



Conclusion of Part 1

The FPGA HPC promise is real!



Part 2:
How to Deliver this Promise



Assumptions on Applications

I Suitable for streaming computation
I Data parallelism
I If it works well in OpenCL or CUDA, it

will work well on FPGA
I Single-precision floating point, integer or

bit-level operations. Doubles take too
much space.

I Suitable model for many scientific
applications (esp. NWP)

I But also for data search, filtering and
classification

I So good for both HPC and data centres



Computational Architecture

I Essentially, a network of processors
I But "processors" defined very loosely
I Very different from e.g. Intel CPU

I Streaming processor
I Minimal control flow
I Single-instruction
I Coarse-grained instructions

I Main challenge is the parallelisation
I Optimise memory throughput
I Optimise computational performance



Example

A – somewhat contrived – example to illustrate our
optimisation approach:

I We assume we have an application that
performs 4 additions, 2 multiplications and a
division

I We assume that the relative areas of the
operations are 16, 400, 2000 slices

I We assume that the multiplication requires 2
clock cycles and the division requires 8 clock
cycles

I The processor area would be
4*64+2*200+1*2000 = 2528 slices

I The compute time 1*4+2*2+8*1 = 16 cycles



Lanes

Memory clock is several times
higher than FPGA clock:
fMEM = n.fFPGA

I To match memory bandwidth
requires at least n parallel
lanes

I For the GiDEL board, n = 4
I So the area requirement is

10,000 slices
I But the throughput is still

only 1/16th of the memory
bandwidth



Threads

Typically, each lane needs to
perform many operations on each
item of data read from memory (16
in the example)

I So we need to parallelise the
computational units per lane
as well

I A common approach is to use
data parallel threads to
achieve processing at
memory rate

I In our example, this requires
16 threads, so 160,000
slices



Pipelining

However, this approach is
wasteful:

I Create a pipeline of the
operations

I Each stage in the pipeline on
needs the operation that it
executes

I In the example, this requires
4*16+2*400+1*2000 slices,
and 8 cycles per datum

I Requires only 8 parallel
threads to achieve memory
bandwidth, so 80,000 slices



Balancing the Pipeline

This is still not optimal:
I As we assume a streaming mode, we can

replicate pipeline stage to balance the
pipeline

I In this way, the pipeline will have optimal
throughput

I In the example, this requires
4*16+2*2*400+8*2000 slices to process at
1 cycle per datum

I So the total resource utilisation is
17,664*4=70,656 slices

I To evaluate various trade-offs (e.g lower
clock speeds/ smaller area/ more cycles),
we use the notion of “Effective Slice Count”
(ESC) to express the number of slices
required by an operation in order to achieve
a balanced pipeline.



Coarse Grained Operations

We can still do better though:
I By grouping fine-grained operations into coarser-grained ones,

we reduce the overhead of the pipeline.
I This is effective as long as the clock speed does not degrade
I Again, the ESC is used to evaluate the optimal grouping



Preliminary Result

I We applied our approach manually to a small part of the
convection kernel

I The balanced pipeline results in 10GFLOPS/W, without any
optimisation in terms of number representation

I This is already better than a Tesla C2075 GPU



Application Size

I The approach we outlined leads to optimal performance if the
circuit fits on the FPGA

I What if the circuit is too large for the FPGA (and you can’t buy a
larger one)?

I Only solution is to trade space for time, i.e. reduce throughput
I Our approach is to group operations into processors
I Each processor instantiates the instruction required to perform all

operations
I Because some instructions are executed frequently, there is an

optimum for operations/area
I As the search space is small, we perform an exhaustive search for

the optimal solution

I The throughput drops with the number of operations per
processor, so based on the theoretical model, for our example
case with 4 to 8 operations it can still be worthwhile to use the
FPGA.



Conclusion of Part 2



Conclusion of Part 2

The FPGA HPC Promise can be
delivered –



Conclusion of Part 2

– but it’s hard work!



A Matter of Programming
I In practice, scientists don’t write “streaming

multiple-lane balanced-pipeline” code.
They write code like this −→−→−→−→−→

I And current high-level programming tools
still require a lot of programmer know-how
to get good performance, because
essentially the only way is to follow a course
as outlined in this talk.

I So we need better programming tools
I And specifically, better compilers



Enter the TyTra Project

I Project between universities of Glasgow,
Heriot-Watt and Imperial College, funded by
EPSRC

I The aim: compile scientific code efficiently
for heterogeneous platforms, including
multicore/manycore CPUs GPGPUs and
FPGAs

I The approach: TYpe TRAnsformations
I Infer the type of all communication in a

program
I Transform the types using a formal,

provably correct mechanism
I Use a cost model to identify the suitable

transformations

I Five-year project, started Jan 2014



But Meanwhile

A practical recipe:
I Given a legacy Fortran application
I And a high-level FPGA programming solution, e.g. Maxeler,

Impulse-C, Vivado or Altera OpenCL
I Rewrite your code in data-parallel fashion, e.g in OpenCL

I There are tools to help you: automated refactoring, Fortran-to-C
translation

I This will produce code suitable for streaming

I Now rewrite this code to be similar to the pipeline model
described

I Finally, rewrite the code obtained in this way for Maxeler,
Impulse-C etc,mainly a matter of syntax



Conclusion

I FPGAs are very promising for HPC
I We presented a model to estimate the maximum achievable

performance on a per-application basis
I Our conclusion is that the power efficiency can be up to 10x

better compared to GPU/multicore CPU
I We presented a methodology to achieve the best possible

performance
I Better tools are needed, but already with today’s tools very good

performance is achievable



Thank you


