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Or in other words
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Part 1:
The Promise of FPGAs for HPC



High-end FPGA Board



FPGAs in a Nutshell
Field-Programmable Gate Array

I Configurable logic
I Matrix of look-up tables (LUTs) that can

be configured into any N-input logic
operation

I e.g. 2-bit LUT configured as XOR:
Address Value

00 1
01 0
10 0
00 1

I Combined with flip-flops to provide state



FPGAs in a Nutshell

I Communication fabric:
I island-style: grid of

wires with islands of
LUTS

I wires with switch boxes
I provides full connectivity

I Also dedicated on-chip
memory



FPGAs in a Nutshell
Programming

I By configuring the LUTs and their
interconnection, one can create arbitrary
circuits

I In practice, circuit description is written
in VHDL or Verilog, and converted into a
configuration file by the vendor tools

I Two major vendors: Xilinx and Altera

I Many "C-based" programming solutions
have been proposed and are
commercially available. They generate
VHDL or Verilog.

I Most recently, OpenCL is available for
FPGA programming (specific
Altera-based boards only)



The Promise

FPGAs have great potential for HPC:
I Low power consumption
I Massive amount of fine grained

parallelism (e.g. Xilinx Virtex-6 has
about 600,000 LUTs)

I Huge (TB/s) internal memory
bandwidth

I Very high power efficiency
(GFLOPS/W)



The Challenge
FPGA Computing Challenge

I Device clock speed is very low
I Many times lower than memory clock
I There is no cache
I So random memory access will kill

the performance
I Requires a very different

programming paradigm
I So, it’s hard
I But that shouldn’t stop us



Maximum Achievable Performance

The theoretical maximum computational performance is determined
by:

I Available Memory bandwidth
I Easy: read the datasheets!

I Compute Capacity
I Hard: what is the relationship between logic gates and “FLOPS”?



FLOPS?

What is a FLOP, anyway?
I Ubiquitous measure of performance for

HPC systems
I Floating-point Operations per second
I Floating-point:

I Single or double precisions?
I Number format: floating-point or

fixed-point?

I Operations:
I Which operations? Addition? Multiplication
I In fact, why floating point?
I Depends on the application



FLOPS!

FLOPS on Multicore CPUs and GPGPUs
I Fixed number of FPUs
I Historically, FP operations had higher cost

than integer operations
I Today, essentially no difference between

integer and floating-point operations
I But scientific applications perform mostly

FP operations
I Hence, FLOPS as a measure of

performance



An Aside: the GPGPU Promise

I Many papers report huge speed-ups: 20x/50x/100x/...
I And the vendors promise the world
I However, theatrical FLOPS are comparable between

same-complexity CPUs and GPGPUs:

#cores vector
size

Clock
speed
(GHz)

GFLOPS

CPU: Intel Xeon E5-2640 24 8 2.5 480
GPU: Nvidia GeForce GX480 15 32 1.4 672
CPU: AMD Opteron 6176 SE 48 4 2.3 442

GPU: Nvidia Tesla C2070 14 32 1.1 493
FPGA: GiDEL PROCStar-IV ? ? 0.2 ??

I Difference is no more than 1.5x



The GPGPU Promise (Cont’d)

I Memory bandwidth is usually higher for GPGPU:

Memory
BW

(GB/s)

CPU: Intel Xeon E5-2640 42.6
GPU: Nvidia GeForce GX480 177.4
CPU: AMD Opteron 6176 SE 42.7

GPU: Nvidia Tesla C2070 144
FPGA: GiDEL PROCStar-IV 32

I The difference is about 4.5x
I So where do the 20x/50x/100x figures come from?
I Unoptimised baselines!



FPGA Power Efficiency Model (1)

I On FPGAs, different instructions (e.g. *, +, /) consume different
amount of resources (area and time)

I FLOPS should be defined on a per-application basis
I We analyse the application code and compute the aggregated

resource requirements based on the count nOP,i and resource
utilisation rOP,i of the required operations
rapp = ∑Ninstrs

i=1 nOP,i rOP,i
I We take into account an area overhead ε for control logic, I/O etc.

I Combined with the available resources on the board rFPGA, the
clock speed fFPGA and the power consumption PFPGA, we can
compute the power efficiency:
Power Efficiency=(1− ε)(rFGPA/rapp)/fFPGA/PFPGA GFLOPS/W



FPGA Power Efficiency Model (2)

Example: convection kernel from the FLEXPART Lagrangian particle
dispersion simulator

I About 600 lines of Fortran 77
I This would be a typical kernel for e.g. OpenCL or CUDA on a

GPU
I Assuming a GiDEL PROCStar-IV board, PFPGA = 30W
I Assume ε = 0.5 (50% overhead, conservative) and clock speed

fFPGA = 175MHz (again, conservative)
I Resulting power efficiency: 30 GFLOPS/W
I By comparison: Tesla C2075 GPU: 4.5 GFLOPS/W
I If we only did multiplications and similar operations, it would be 15

GFLOPS/W
I If we only did additions and similar operations, it would be 225

GFLOPS/W

I Depending on the application, the power efficiency can be up to
50x better on FPGA!



Conclusion of Part 1



Conclusion of Part 1

The FPGA HPC promise is real!



Part 2:
How to Deliver this Promise



Assumptions on Applications

I Suitable for streaming computation
I Data parallelism
I If it works well in OpenCL or CUDA, it

will work well on FPGA
I Single-precision floating point, integer or

bit-level operations. Doubles take too
much space.

I Suitable model for many scientific
applications (esp. NWP)

I But also for data search, filtering and
classification

I So good for both HPC and data centres



Computational Architecture

I Essentially, a network of processors
I But "processors" defined very loosely
I Very different from e.g. Intel CPU

I Streaming processor
I Minimal control flow
I Single-instruction
I Coarse-grained instructions

I Main challenge is the parallelisation
I Optimise memory throughput
I Optimise computational performance



Example

A – somewhat contrived – example to illustrate our
optimisation approach:

I We assume we have an application that
performs 4 additions, 2 multiplications and a
division

I We assume that the relative areas of the
operations are 16, 400, 2000 slices

I We assume that the multiplication requires 2
clock cycles and the division requires 8 clock
cycles

I The processor area would be
4*64+2*200+1*2000 = 2528 slices

I The compute time 1*4+2*2+8*1 = 16 cycles



Lanes

Memory clock is several times
higher than FPGA clock:
fMEM = n.fFPGA

I To match memory bandwidth
requires at least n parallel
lanes

I For the GiDEL board, n = 4
I So the area requirement is

10,000 slices
I But the throughput is still

only 1/16th of the memory
bandwidth



Threads

Typically, each lane needs to
perform many operations on each
item of data read from memory (16
in the example)

I So we need to parallelise the
computational units per lane
as well

I A common approach is to use
data parallel threads to
achieve processing at
memory rate

I In our example, this requires
16 threads, so 160,000
slices



Pipelining

However, this approach is
wasteful:

I Create a pipeline of the
operations

I Each stage in the pipeline on
needs the operation that it
executes

I In the example, this requires
4*16+2*400+1*2000 slices,
and 8 cycles per datum

I Requires only 8 parallel
threads to achieve memory
bandwidth, so 80,000 slices



Balancing the Pipeline

This is still not optimal:
I As we assume a streaming mode, we can

replicate pipeline stage to balance the
pipeline

I In this way, the pipeline will have optimal
throughput

I In the example, this requires
4*16+2*2*400+8*2000 slices to process at
1 cycle per datum

I So the total resource utilisation is
17,664*4=70,656 slices

I To evaluate various trade-offs (e.g lower
clock speeds/ smaller area/ more cycles),
we use the notion of “Effective Slice Count”
(ESC) to express the number of slices
required by an operation in order to achieve
a balanced pipeline.



Coarse Grained Operations

We can still do better though:
I By grouping fine-grained operations into coarser-grained ones,

we reduce the overhead of the pipeline.
I This is effective as long as the clock speed does not degrade
I Again, the ESC is used to evaluate the optimal grouping



Preliminary Result

I We applied our approach manually to a small part of the
convection kernel

I The balanced pipeline results in 10GFLOPS/W, without any
optimisation in terms of number representation

I This is already better than a Tesla C2075 GPU



Application Size

I The approach we outlined leads to optimal performance if the
circuit fits on the FPGA

I What if the circuit is too large for the FPGA (and you can’t buy a
larger one)?

I Only solution is to trade space for time, i.e. reduce throughput
I Our approach is to group operations into processors
I Each processor instantiates the instruction required to perform all

operations
I Because some instructions are executed frequently, there is an

optimum for operations/area
I As the search space is small, we perform an exhaustive search for

the optimal solution

I The throughput drops with the number of operations per
processor, so based on the theoretical model, for our example
case with 4 to 8 operations it can still be worthwhile to use the
FPGA.



Conclusion of Part 2



Conclusion of Part 2

The FPGA HPC Promise can be
delivered –



Conclusion of Part 2

– but it’s hard work!



A Matter of Programming
I In practice, scientists don’t write “streaming

multiple-lane balanced-pipeline” code.
They write code like this −→−→−→−→−→

I And current high-level programming tools
still require a lot of programmer know-how
to get good performance, because
essentially the only way is to follow a course
as outlined in this talk.

I So we need better programming tools
I And specifically, better compilers



Enter the TyTra Project

I Project between universities of Glasgow,
Heriot-Watt and Imperial College, funded by
EPSRC

I The aim: compile scientific code efficiently
for heterogeneous platforms, including
multicore/manycore CPUs GPGPUs and
FPGAs

I The approach: TYpe TRAnsformations
I Infer the type of all communication in a

program
I Transform the types using a formal,

provably correct mechanism
I Use a cost model to identify the suitable

transformations

I Five-year project, started Jan 2014



But Meanwhile

A practical recipe:
I Given a legacy Fortran application
I And a high-level FPGA programming solution, e.g. Maxeler,

Impulse-C, Vivado or Altera OpenCL
I Rewrite your code in data-parallel fashion, e.g in OpenCL

I There are tools to help you: automated refactoring, Fortran-to-C
translation

I This will produce code suitable for streaming

I Now rewrite this code to be similar to the pipeline model
described

I Finally, rewrite the code obtained in this way for Maxeler,
Impulse-C etc,mainly a matter of syntax



Conclusion

I FPGAs are very promising for HPC
I We presented a model to estimate the maximum achievable

performance on a per-application basis
I Our conclusion is that the power efficiency can be up to 10x

better compared to GPU/multicore CPU
I We presented a methodology to achieve the best possible

performance
I Better tools are needed, but already with today’s tools very good

performance is achievable



Thank you


