
1© 2014 The MathWorks, Inc.

MATLAB:
GPU support in a high-level language

Ben Tordoff

Lead developer: GPU and parallel algorithms

MathWorks

2

Agenda

 Why add GPU support?

 Who is it for?

 What does it look like?

3

Why add GPU support?

 Customer requests

 Hardware becoming common

 Allows certain algorithms to be accelerated

 An established platform for HPC

4

Why wait until 2010?

GPU support was first added in Autumn 2010 (R2010b).

Our requirements:

 Double support

– Single/double performance inline with expectations

 IEEE Compliant

 Cross-platform

 Mature libraries (FFT, BLAS, LAPACK etc.)

5

Agenda

 Why add GPU support?

 Who is it for?

 What does it look like?

6

Who is the target audience?

 Everyday MATLAB users

 Tool builders

 GPU developers

E
a

s
e

 o
f

U
s

e

G
re

a
te

r C
o

n
tro

l

7

Who is the target audience?

 Everyday MATLAB users

– Want extra speed

– Don’t want to have to learn lots of new stuff

– Don’t want to change code

– Want to do it all from within MATLAB

8

Who is the target audience?

 Tool builders

– Want extra speed

– Willing to learn new things

– Willing to customize/optimize code for speed

– Want to do it all from within MATLAB

9

Who is the target audience?

 GPU developers

– Want every ounce of available speed

– Know MATLAB, C++, CUDA, …

– Live to customize/optimize code for speed

– Want to integrate CUDA/C++ code with MATLAB

10

Agenda

 Why add GPU support?

 Who is it for?

 What does it look like?

11

Who is the target audience?

 Can we support all the different users with one API?

– No

 Different users want very different levels of control

 Need APIs suited to users

12

Agenda

 Why add GPU support?

 Who is it for?

 What does it look like?

– Everyday MATLAB user

13

Example:

Corner Detection on the CPU

dx = cdata(2:end-1,3:end) - cdata(2:end-1,1:end-2);

dy = cdata(3:end,2:end-1) - cdata(1:end-2,2:end-1);

dx2 = dx.*dx;

dy2 = dy.*dy;

dxy = dx.*dy;

gaussHalfWidth = max(1, ceil(2*gaussSigma));

ssq = gaussSigma^2;

t = -gaussHalfWidth : gaussHalfWidth;

gaussianKernel1D = exp(-(t.*t)/(2*ssq))/(2*pi*ssq); % The Gaussian 1D filter

gaussianKernel1D = gaussianKernel1D / sum(gaussianKernel1D);

smooth_dx2 = conv2(gaussianKernel1D, gaussianKernel1D, dx2, 'valid');

smooth_dy2 = conv2(gaussianKernel1D, gaussianKernel1D, dy2, 'valid');

smooth_dxy = conv2(gaussianKernel1D, gaussianKernel1D, dxy, 'valid');

det = smooth_dx2 .* smooth_dy2 - smooth_dxy .* smooth_dxy;

trace = smooth_dx2 + smooth_dy2;

score = det - 0.25*edgePhobia*(trace.*trace);

1. Calculate derivatives

2. Smooth by convolution

3. Calculate score

14

Example:

Corner Detection on the GPU

cdata = gpuArray(cdata);

dx = cdata(2:end-1,3:end) - cdata(2:end-1,1:end-2);

dy = cdata(3:end,2:end-1) - cdata(1:end-2,2:end-1);

dx2 = dx.*dx;

dy2 = dy.*dy;

dxy = dx.*dy;

gaussHalfWidth = max(1, ceil(2*gaussSigma));

ssq = gaussSigma^2;

t = -gaussHalfWidth : gaussHalfWidth;

gaussianKernel1D = exp(-(t.*t)/(2*ssq))/(2*pi*ssq); % The Gaussian 1D filter

gaussianKernel1D = gaussianKernel1D / sum(gaussianKernel1D);

smooth_dx2 = conv2(gaussianKernel1D, gaussianKernel1D, dx2, 'valid');

smooth_dy2 = conv2(gaussianKernel1D, gaussianKernel1D, dy2, 'valid');

smooth_dxy = conv2(gaussianKernel1D, gaussianKernel1D, dxy, 'valid');

det = smooth_dx2 .* smooth_dy2 - smooth_dxy .* smooth_dxy;

trace = smooth_dx2 + smooth_dy2;

score = det - 0.25*edgePhobia*(trace.*trace);

score = gather(score);

0. Move data to GPU

4. Bring data back

15

Results

 Image is from an 8MP DSLR

– (3504x2336)

 Host-PC (6-core Intel Xeon @3.5GHz)

– 0.42 secs

 GPU (NVIDIA Tesla K20c)

– 0.065 secs (6.5x faster)

= 0.036 secs for algorithm

+ 0.029 secs for data-transfer

16

Making a gpuArray

 To make an array exist on the GPU

g = gpuArray(dataOnHost);

g = zeros(argsToZeros, 'gpuArray');

g = randn(argsToRandn, 'gpuArray');

and others...

 To move a data back to main memory
x = gather(dataOnGPU);

 Supports all built-in numeric types plus logicals

[complex|][[uint|int][8|16|32|64]|double|single]|logical

17

Why have an API at all?

 Should we just use the GPU without you knowing?

 Answers can be different on the GPU

 Reproducibility is a key requirement for our customers

 Transferring data to and from the GPU can be slow

– For big operations (large linear algebra problems, big FFTs

etc.) this might not matter

– For medium or small operations it would cripple performance

 We need the programmer to tell us when it is worth

transferring the data

18

Agenda

 Why add GPU support?

 Who is it for?

 What does it look like?

– Everyday MATLAB user

– Tool builder

19

Work pattern: gpuArray

*

*

*

*

A tmp

result = (A .* B) + C

+

+

+

+

result

B C

20

Work pattern: arrayfun

fcn = @(A,B,C) (A .* B) + C;

result = arrayfun(@fcn,A,B,C)

* +A(4) tmp(4) result(4)

B(4) C(4)

* +A(3) tmp(3) result(3)

B(3) C(3)

* +A(2) tmp(2) result(2)

B(2) C(2)

* +A(1) tmp(1) result(1)

B(1) C(1)

21

Why is this a good idea?

 We know what inputs are being passed to your function

 We know what code is in your function

 if we can type infer all variables in your code

 then we can generate code for the GPU

 your function executes as a single CUDA kernel, with

one thread for each element of the input array

22

Other ways to express parallelism

 PAGEFUN – run a 2-D operation on every page of

some N-D arrays.

 E.g. multiply 10,000 3x3 matrices:

A = rand(3,3,10000,'gpuArray'); % 10000 3x3 matrices

b = rand(3,1,'gpuArray');

C = pagefun(@mtimes, A, b); % C will be 3x1x10000

23

Agenda

 Why add GPU support?

 Who is it for?

 What does it look like?

– Everyday MATLAB user

– Tool builder

– GPU programmer

24

Invoking CUDA Kernels

% Setup

kern = parallel.gpu.CUDAKernel('myKern.ptx', cFcnSig)

% Configure

kern.ThreadBlockSize=[512 1];

kern.GridSize=[1024 1024];

% Run

c = feval(kern, a, b);

 Call a CUDA kernel straight from MATLAB

 Use MATLAB as a fast kernel prototyping environment

__global__

void myKern(double * arg1, double const * arg2)

{

int const idx = threadIdx.x + blockIdx.x*blockDim.x;

arg1[idx] += arg2[idx];

}

25

C (MEX) API

 MEX function appears as a standard MATLAB function

 Implemented in a mix of C / C++ and CUDA code

 Can call other CUDA libraries (OpenCV, CuSparse etc.)

 Programmer has to manage data, kernel/library calls,

and synchronisation issues

26

C (MEX) API
void mexFunction(int nlhs, mxArray *plhs[],

int nrhs, mxArray const *prhs[])

{

// Initialize the MathWorks GPU API.

mxInitGPU();

// Get the input image

mxGPUArray const * I = mxGPUCreateFromMxArray(prhs[0]);

// Wrap I with an OpenCV GPU matrix

float const * d_I = (float const *)(mxGPUGetDataReadOnly(I));

cv::gpu::GpuMat const cv_image(cv::Size(M, N), CV_8UC1, (void *)d_I);

[snip]

// Detect corner features using the OpenCV GPU FAST feature detector

std::vector<cv::KeyPoint> keypoints;

cv::gpu::FAST_GPU featureDetector(threshold);

featureDetector(cv_image, cv::gpu::GpuMat(), keypoints);

// Assign output

plhs[0] = fastKeyPointToMATLABStruct(keypoints);

// The mxGPUArray pointers are host-side structures that refer to device

// data. These must be destroyed before leaving the MEX function.

mxGPUDestroyGPUArray(I);

}

27

Summary

 Expose the GPU using three levels of API:

– gpuArray for minimal code change

– arrayfun, bsxfun, pagefun for optimizing code

– CUDAKernel and CUDA-MEX for integrating CUDA kernels or

libraries

