
1© 2014 The MathWorks, Inc.

MATLAB:
GPU support in a high-level language

Ben Tordoff

Lead developer: GPU and parallel algorithms

MathWorks

2

Agenda

 Why add GPU support?

 Who is it for?

 What does it look like?

3

Why add GPU support?

 Customer requests

 Hardware becoming common

 Allows certain algorithms to be accelerated

 An established platform for HPC

4

Why wait until 2010?

GPU support was first added in Autumn 2010 (R2010b).

Our requirements:

 Double support

– Single/double performance inline with expectations

 IEEE Compliant

 Cross-platform

 Mature libraries (FFT, BLAS, LAPACK etc.)

5

Agenda

 Why add GPU support?

 Who is it for?

 What does it look like?

6

Who is the target audience?

 Everyday MATLAB users

 Tool builders

 GPU developers

E
a

s
e

 o
f

U
s

e

G
re

a
te

r C
o

n
tro

l

7

Who is the target audience?

 Everyday MATLAB users

– Want extra speed

– Don’t want to have to learn lots of new stuff

– Don’t want to change code

– Want to do it all from within MATLAB

8

Who is the target audience?

 Tool builders

– Want extra speed

– Willing to learn new things

– Willing to customize/optimize code for speed

– Want to do it all from within MATLAB

9

Who is the target audience?

 GPU developers

– Want every ounce of available speed

– Know MATLAB, C++, CUDA, …

– Live to customize/optimize code for speed

– Want to integrate CUDA/C++ code with MATLAB

10

Agenda

 Why add GPU support?

 Who is it for?

 What does it look like?

11

Who is the target audience?

 Can we support all the different users with one API?

– No

 Different users want very different levels of control

 Need APIs suited to users

12

Agenda

 Why add GPU support?

 Who is it for?

 What does it look like?

– Everyday MATLAB user

13

Example:

Corner Detection on the CPU

dx = cdata(2:end-1,3:end) - cdata(2:end-1,1:end-2);

dy = cdata(3:end,2:end-1) - cdata(1:end-2,2:end-1);

dx2 = dx.*dx;

dy2 = dy.*dy;

dxy = dx.*dy;

gaussHalfWidth = max(1, ceil(2*gaussSigma));

ssq = gaussSigma^2;

t = -gaussHalfWidth : gaussHalfWidth;

gaussianKernel1D = exp(-(t.*t)/(2*ssq))/(2*pi*ssq); % The Gaussian 1D filter

gaussianKernel1D = gaussianKernel1D / sum(gaussianKernel1D);

smooth_dx2 = conv2(gaussianKernel1D, gaussianKernel1D, dx2, 'valid');

smooth_dy2 = conv2(gaussianKernel1D, gaussianKernel1D, dy2, 'valid');

smooth_dxy = conv2(gaussianKernel1D, gaussianKernel1D, dxy, 'valid');

det = smooth_dx2 .* smooth_dy2 - smooth_dxy .* smooth_dxy;

trace = smooth_dx2 + smooth_dy2;

score = det - 0.25*edgePhobia*(trace.*trace);

1. Calculate derivatives

2. Smooth by convolution

3. Calculate score

14

Example:

Corner Detection on the GPU

cdata = gpuArray(cdata);

dx = cdata(2:end-1,3:end) - cdata(2:end-1,1:end-2);

dy = cdata(3:end,2:end-1) - cdata(1:end-2,2:end-1);

dx2 = dx.*dx;

dy2 = dy.*dy;

dxy = dx.*dy;

gaussHalfWidth = max(1, ceil(2*gaussSigma));

ssq = gaussSigma^2;

t = -gaussHalfWidth : gaussHalfWidth;

gaussianKernel1D = exp(-(t.*t)/(2*ssq))/(2*pi*ssq); % The Gaussian 1D filter

gaussianKernel1D = gaussianKernel1D / sum(gaussianKernel1D);

smooth_dx2 = conv2(gaussianKernel1D, gaussianKernel1D, dx2, 'valid');

smooth_dy2 = conv2(gaussianKernel1D, gaussianKernel1D, dy2, 'valid');

smooth_dxy = conv2(gaussianKernel1D, gaussianKernel1D, dxy, 'valid');

det = smooth_dx2 .* smooth_dy2 - smooth_dxy .* smooth_dxy;

trace = smooth_dx2 + smooth_dy2;

score = det - 0.25*edgePhobia*(trace.*trace);

score = gather(score);

0. Move data to GPU

4. Bring data back

15

Results

 Image is from an 8MP DSLR

– (3504x2336)

 Host-PC (6-core Intel Xeon @3.5GHz)

– 0.42 secs

 GPU (NVIDIA Tesla K20c)

– 0.065 secs (6.5x faster)

= 0.036 secs for algorithm

+ 0.029 secs for data-transfer

16

Making a gpuArray

 To make an array exist on the GPU

g = gpuArray(dataOnHost);

g = zeros(argsToZeros, 'gpuArray');

g = randn(argsToRandn, 'gpuArray');

and others...

 To move a data back to main memory
x = gather(dataOnGPU);

 Supports all built-in numeric types plus logicals

[complex|][[uint|int][8|16|32|64]|double|single]|logical

17

Why have an API at all?

 Should we just use the GPU without you knowing?

 Answers can be different on the GPU

 Reproducibility is a key requirement for our customers

 Transferring data to and from the GPU can be slow

– For big operations (large linear algebra problems, big FFTs

etc.) this might not matter

– For medium or small operations it would cripple performance

 We need the programmer to tell us when it is worth

transferring the data

18

Agenda

 Why add GPU support?

 Who is it for?

 What does it look like?

– Everyday MATLAB user

– Tool builder

19

Work pattern: gpuArray

*

*

*

*

A tmp

result = (A .* B) + C

+

+

+

+

result

B C

20

Work pattern: arrayfun

fcn = @(A,B,C) (A .* B) + C;

result = arrayfun(@fcn,A,B,C)

* +A(4) tmp(4) result(4)

B(4) C(4)

* +A(3) tmp(3) result(3)

B(3) C(3)

* +A(2) tmp(2) result(2)

B(2) C(2)

* +A(1) tmp(1) result(1)

B(1) C(1)

21

Why is this a good idea?

 We know what inputs are being passed to your function

 We know what code is in your function

 if we can type infer all variables in your code

 then we can generate code for the GPU

 your function executes as a single CUDA kernel, with

one thread for each element of the input array

22

Other ways to express parallelism

 PAGEFUN – run a 2-D operation on every page of

some N-D arrays.

 E.g. multiply 10,000 3x3 matrices:

A = rand(3,3,10000,'gpuArray'); % 10000 3x3 matrices

b = rand(3,1,'gpuArray');

C = pagefun(@mtimes, A, b); % C will be 3x1x10000

23

Agenda

 Why add GPU support?

 Who is it for?

 What does it look like?

– Everyday MATLAB user

– Tool builder

– GPU programmer

24

Invoking CUDA Kernels

% Setup

kern = parallel.gpu.CUDAKernel('myKern.ptx', cFcnSig)

% Configure

kern.ThreadBlockSize=[512 1];

kern.GridSize=[1024 1024];

% Run

c = feval(kern, a, b);

 Call a CUDA kernel straight from MATLAB

 Use MATLAB as a fast kernel prototyping environment

__global__

void myKern(double * arg1, double const * arg2)

{

int const idx = threadIdx.x + blockIdx.x*blockDim.x;

arg1[idx] += arg2[idx];

}

25

C (MEX) API

 MEX function appears as a standard MATLAB function

 Implemented in a mix of C / C++ and CUDA code

 Can call other CUDA libraries (OpenCV, CuSparse etc.)

 Programmer has to manage data, kernel/library calls,

and synchronisation issues

26

C (MEX) API
void mexFunction(int nlhs, mxArray *plhs[],

int nrhs, mxArray const *prhs[])

{

// Initialize the MathWorks GPU API.

mxInitGPU();

// Get the input image

mxGPUArray const * I = mxGPUCreateFromMxArray(prhs[0]);

// Wrap I with an OpenCV GPU matrix

float const * d_I = (float const *)(mxGPUGetDataReadOnly(I));

cv::gpu::GpuMat const cv_image(cv::Size(M, N), CV_8UC1, (void *)d_I);

[snip]

// Detect corner features using the OpenCV GPU FAST feature detector

std::vector<cv::KeyPoint> keypoints;

cv::gpu::FAST_GPU featureDetector(threshold);

featureDetector(cv_image, cv::gpu::GpuMat(), keypoints);

// Assign output

plhs[0] = fastKeyPointToMATLABStruct(keypoints);

// The mxGPUArray pointers are host-side structures that refer to device

// data. These must be destroyed before leaving the MEX function.

mxGPUDestroyGPUArray(I);

}

27

Summary

 Expose the GPU using three levels of API:

– gpuArray for minimal code change

– arrayfun, bsxfun, pagefun for optimizing code

– CUDAKernel and CUDA-MEX for integrating CUDA kernels or

libraries

