MANCHESTER:«
. 1824

nerging Iechnology
‘Conference

(inteIQ) Look Inside”

Two examples\case studies
using Intel® Xeon™ Phi

Tachyon Ray Tracing

Cloverleaf Hydrodynamics Mini-app

Stephen Blair-Chappell, Intel "'|[

Tachyon ray tracer
Port to Intel® Xeon Phi™ with Intel® Cluster Studio XE

Project goals

e Port to Intel® Xeon Phi™ and reach tangible performance
gains vs initial Xeon-only baseline

e Test-drive Intel® Cluster Studio XE on Xeon Phi

« Create a case-study, with practical recommendations reusable
In other cases

Not a goal: to create the best performing ray tracer. Refer to
dedicated projects (e.g. Embree by Intel Labs)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Tachyon ray tracer

Open source ray tracing demo

(http://jedi.ks.uiuc.edu/~johns/raytracer/)

Part of SpecMPI suite
Supports parallelism (MPI + OpenMP)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

http://jedi.ks.uiuc.edu/%7Ejohns/raytracer/

Computational modes

, _ Throughput computing
Real-time rendering

Production of Puss in Boofts
required 69 million render hours

Images (c) Audi, Dreamworks

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Tachyon algorithm

3D model is a set of primitives (e.g.
triangles)

3D space is pre-divided into grid, each
voxel points to list of triangles
contained/crossing it

Image pixel calculated using ray
intersections (lights, reflections, shadows)

Hybrid parallelism: each frame is divided
iInto chunks processed by MPI processes,
a chunk is divided into lines processed by
OpenMP threads

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

4

AY
AY
Ay
\
AY

Thread O

Thread 1

Thread O

Thread 1

Known issues of the algorithm

@ Communication profile:
= 1 master and n workers. Workers communicate to the master only.

» Master performs same computations + processing. A bottleneck and limited
scalability.
= Each frame starts after a previous one. All workers have to wait for order
from the master.
® Work imbalance: lines and frames have different complexities
= © Hybrid parallelism with dynamic OpenMP scheduling helps to relieve
= Static MPI scheduling still exhibits the issue across frames

Limited scalability across Xeon cluster. MPI+OpenMP hybrid better than MPI
only

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Extra challenge - imbalance across
Xeon and Xeon Phi

Xeon and Xeon Phi have different performances
How to split up the work ?

Which execution model to choose ?

Is ray tracing good for Xeon Phi ?

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Porting: Efficient apps for Xeon Phi

Tachyon’s profile:

1. Allow massive parallelism
(to load 60+cores x 4 threads)

@ no slack: available parallel work
(frame height) ~ # of threads

2. Run intensive computations
(to efficiently use 512bit vectors)

® no vectorizable loops, only
scalar computations

3. Provide memory efficiency
(to meet current 4-8GB constraints)

| F— EEEEEEN
i@iﬂsiﬂe" @fﬂsiﬂe" """'
e dmiEEEEEEN

Xeon'

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Optimization Notice

Target execution model — Symmetric
MPI

DIRECTIVES

XEON®
XEON® PHI

NATIVE model OFFLOAD model \ SYMMETRIC model /

Most flexible. Least number of code changes.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Build for Xeon Phi

No code changes, only makefile:

-mmic Target platform is Xeon Phi
-fp-model Trade-off between accuracy and
fast=2 performance, OK for ray tracing

Very easy! Running code in a minute

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Why ‘—fp-model fast=2’ ?

With default flag, a reciprocal (1/x) computation unexpectedly
became a hotspot on Phi (not on Xeon):

 Compiler generated heavy-weight code for higher precision

-fp-model fast=2 is a trade-off to favor performance (precision is
still fine for ray tracing)

* Reciprocal calculation time reduced by >2x

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Run...

export 1 _MPI1_MIC=enable

mpiexec.hydra \
-n 2 -host mynodel <command-l1ine>
-n 2 -host mynode2 <command-l1ine>

\
\

-n 2 —host mynoden <command-line> - \
-n 2 —host mynodel-micO <command-line> : \
-n 2 —host mynodel-micl <command-line> : \
-n 2 —host mynode2-micO <command-line> : \
-n 2 —host mynoden-micl <command-line>

Same syntax. A Phi card is just like another node.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

First results

P4 4 nodes x 2SNB -

102 FPS
4 nodes x 1KNC — 32 4 nodes X (2SNB +

SNB - Sandy Bridge, 2" generation Intel® Core™ processors

KNC - Knights Corner, Intel® Xeon Phi™ co-processors

Heterogeneous run slows down. Need to understand what happens

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Using Intel® Trace Analyzer and

| Processes _—%MajorFunLtinnGrDups Y

Multiple

synchronizations: all i/ i —
processes have to wait r'j’f“l—f"l—“’
for the master ' il

A ppliceArplicati happlicati A ticr MPL Applicati Application MPIApplicati ITHILN MPI Overhead iS

Wi iarclication Moelication Anslication WPl Apelicabion deslication MPlAsolication Anelication . . .

FO -'1.'1'-ulitau'lr.'-u'-uliu:atir:-n MPlApplication iApplicationMPl ApplicatimApplication lﬂ-.'w*-litatic-r.ﬂ” Slgnrﬁcant Comparlng tO
useful work

Flat Prefle | Lead Balance | Call Tree | Call Graph |

Group All_Processes j
Harme / |T5@If |T5£»IF |'I'rt:-ta| |#Ca|ls |T5@If.u'EaII |
E" GFoup All_Processes
i~ @roup Agplication 1.54605 c NN 7 12625 : i n.a.
o Group MPI sa0 103=-3 = [580 103=-3 5 3084 188.13=-6 5 k‘

Rl

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. ptimization Notice

USi ng VTU ne " Am pl |f| er OpenMP overhead within

each frame due to work
imbalance

& Lnalysis Target Analysis Type | | Ml Summary QBottom-up ¢ Caller/Calles | | ¥ Top-down Tree | | B

Grouping:

. (result collected on 61
S —— threads; 244 threads will

Function / Call Stack CPU Time by Utiization % Bl '”i’;ﬂ‘;”s 2:3 worsen the imbalance)
Oldle @Poor 0Ok @Ideal [Over Spi...

Dgn’d_intersect 63.6555 (NN 34,779,000,000 0s . n

Ptri intersect 51.5155_ 31,095,000,000 0s 2.045 o tachyon tri intersect

P_kmp_wait_sleep 14.347s 4,285,000,000 14347s 4125 1.000 libiomp5.so __kmp_wait_sleep

D‘_kmp_static_yield 8357: 0 1,618,000,000 83575 6363 1.000 libiomp5.so __kmp_static_yield{int)

Pgrid_bounds_intersect 6.896s I 4,305,000,000 0s1.974 1.000 tachyon grid_bounds_intersect

Pfull_shader 6.331: [3,811,000,000 0s 2047 1.000 tachyon full_shader

P Selected 1 rowis): 51.6165 31,095,000,000 0s 2.045 1.000 E

Sl HiCB i ¥

Qo Q=0 1100ms 1200ms Loy
tachyontﬂxlﬂfl?““””””” . — i s - — - 1] 7 frame
OMP Worker Thre Thread

e 1T

er Thre ,

E OMP Worker Thre M CPU Time
OMP Worker Thre [ik Overhea..
OMP Worker Thre CPU Time
B [v] duk CPU Time

cPuTime W‘ [] dluk Overhea..

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. ptimization Notice

Using VTune™ Amplifier XE

LU L) & g A . .
aBottom-up i
Grouping: | Function/ Call Stack S0 | L
% Clockticks by ... Instructions Rl Cache Usage Vectorization Usage
CPU Time o Ratired Rat - - -
CPU CLK UNH... s #€ |1 Misses L1H.. Estimat.. Vectoriz.. [1C.. 12Comp... L1
P grid intersect 61.006< (MMM 75,159,000,000 37,870,000,000 1985 361,200,000 0569 108312 1889 2119 67384 0.
Ptri intersect 50977 (NN 62,804,000,000 33,775,000,000 1859 2,100,000 1.000 7619.3 1101 1147 10683333 0.
P_kmp wait sleep 18,5625 () 22,869,000,000 3,465,000,000 6.600 0 1.000 0 0000 0000 0.000 0.
P_kmp_static yield 105 0 1.000 000 0.000 0.000 0.000 0.
Pgrid bounds_intersect 01 0.000 2191 5785 0.000 0.
P full_shader 115762 2.743 1945 330476 0.
Plight intersect 1258000 1827 0897 20)0.000 0.
b Selected 1 row(s): 200 a) ATION O a /972 65421 11177 22940 B29474 0.0v
¢ Rl ’ »
0)
Qo QO 125 13s D1s 225 23s e
OF Worker The | [s Recall: qood vectorizatic EEEe—— || 7] frame
OMP Worker Thre { [v] Thread
B prerequisite Tor etricie 78 furning
m er (nre
v Hardware E...
£ [OWF Worker Thre 20N F O] ik
F [OMP Worker Thre []Hardware Events
OMP Worker Thre [| Frame Rate
OMP Worker Thre 3

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Conclusions

* No vectorization — 512 bit registers (able to hold 16 floats) are
wasted

* Insufficient parallelism — 240Ter-threads are wasted
e Ranks on Xeon Phi run slower than on Xeon

Due to static MPI scheduling within each frame and frame-by-
frame computation, Xeon’s cannot start new frame until Xeon
Phi’s complete their lines.

Total performance suffers

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Improvement directions

A
Dynamic
balancing across
MPI ranks
>
SIMD: exploit Efficient intra-process
vectors OpenMP parallelism

This works for both Xeon Phi and Xeon

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

#1 - Dynamic MPI scheduling

Each worker computes entire frame: asks a master for
a frame #, computes and sends back entire frame

5E
i

Master maintains a circular buffer, dispatches frame
#, displays a frame. No computation by master

NELCJ
5

e Circular buffer to avoid memory growth

Significantly reduces # of communications

Reduced synchronizations: a worker does not wait for
others anymore

Compensates Xeon vs Xeon Phi difference

Increases scalability

Improves both Xeon Phi and Xeon-only !

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Code change

 Producer-consumer like algorithm
 New algorithm — ~250 lines in main loop

* Not Xeon Phi specific: could be implemented to
address limited Xeon scalability. Xeon Phi just
triggered it.

e This is important: you optimize for Xeon, benefit
everywhere!

Non-trivial but not a rocket science. Double ROI

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Re-running Intel Trace Analyzer and
Collector

m O Intel ® Trace Analyzer - [I: home/dygintachyon-0.09b6achyon/itc/101 achyon.st] <@nnlmpimici7?:

WEHQ Opticrs Project Windows Help
Wiew Charts Navigate Advanced Laycut

.1
i 000D OOD- 4151 797 : 4151 797 |Geconds * Al Processes £ Major Function Groups L&
o) | | B 5w w@

MPI processes are doing
useful work, not waiting
for each other

i

w0 k| AU

Fo aticn M did M) Ul Al [TIHE)
0 0O A
F1 A SAPALp
I
F2 \
R e licaticn Ly

W Thin' master is quickly
o dispatching the work
R and polling for

PE

completion status

]

F10

1

Rl

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. ptimization Notice

Re-running Intel Trace Analyzer and

Collector (cont’e

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

)

'\.

Total Data wilume [B] (Sender by Receiver)

=
F0 | F1| P2| P3| P4| P5| P6| P7) FB| PB|=11| Sum | Mean
FO 13ilk 151
46,4 M | 26,4 M
4.8 M a8 8 M
p3 s s 153 M
P4 15.7 M
F5 Is.7 M 137 M
Ph 1s.7 M 157 M
P s s 153 M
PE 1s.7 M 157 M
Fo Is.7 M 137 M
P10 la.aM 159 M
surm 230 M 240232 100 104 104 104 loo 104 104 100 230 M v
4 | l|J

#2. Improve OpenMP parallelism

Create parallel slack by reducing
chunk size: from a line to a few pixels.

||||||

= >= cache line (to avoid false sharing)

Keep dynamic scheduling
(OMP_SCHEDULE=dynamic)

Enables massive parallelism (# of
chunks >> HW threads)

Compensates different line
complexities

» Also helps on Xeon

Code change

#pragma omp for schedule(runtime) nowait
#if defined(SINGLE VAR LOOP)

for (p = @; p ¢ total pixel; p += grain size) { 6 new Ilnes
for (pp = @; pp < grain_size; pptt) { _
int tp = p + pp; an
y = starty + (tp / xcount) * yinc; OpenMP
x = startx + {tp % xcount) * xing;
addr = hsize * (y - 1) + (3 * (x - 1)): for-Ioop by

|#else /* SINGLE VAR LOOP */ .
for (y=starty; y<=stopy; y+=yinc) { p|Xe| #’
addr = hsize * (y - 1) + (3 * (startx - 1)); |nstead Of
_ for (x=startx; x<=stopx; x+=xinc,addr+=hskip) {]
sendif by line #
primary.frng = cachefrng; /* each pixel uses
cel=scene->camera.cam _ray(&primary, x, y);

Straightforward change. The same parallel model — OpenMP. Again, double
ROI

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Re-running with Amplifier

M Hotspots Ho

sis Target Analysis Type | | i Summary QBottom-up % Caller/Callee | | % Top-down Tree| |

OpenMP overhead

significantly reduced.

Function / Call Stack

Grouping:

The timeline is clean
reflecting good work

. CPUTime by Utilization ~ ® B Instructions 2V balance
Function / Call Stack Retired :
Oldie W Poor [JOk [Ideal @ Over Spi.
D svml powfl6_mask 2222500 1,028,000,000 0s
P shade reflection 2.0325' 1,007,000,000 0s 2
[P kmp wait sleep 1.840s]) 504,000,000 1.840s 4.498 ZRIE_WdT_sTecp
P simple_point light shade_diffuse 17425 802,000,000 0s 2676 simple_point_light_shade_diffuse
Ptest then inc_acq<int> k. 156895 29,000,000 0s B6.5 ¢ llbiomp5.50 inttest then_inc_acg<int=(int volat
P generic smp call function single interrupt 1.284s| 317,000,000 0s &1 1.000 vmlinux generic_smp_call function_single_in
[D_kmp_static_:.field 1.084s 209,000,000 10845 6388 1.000 libiomp5.50 | _kmp_static_yield(int)
Pstri normal 1.028:1 537,000,000 0s 2358 1.000 tachvon stri normal
Selected 1 row(s): 672255 34,941,000,000 0s 2370 1.000
* [| K ¥
QOQ#C=Ce 065 0Js 0Bs 08s 1s | 1ls 125 13s | 14s 15 165 1Js LBs Ll
tachyon (0x1537 == ¥ P frame
T [OMP Worker Thre [v] Thread
£ P viert P
v CPU Time
OMP Worker Thre) ik
[¥] luk Overhea...
CPU Time ‘ I CPU Time
(] duk CPU Time |

\

_J/

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

ptimization Notice

#3. Exploiting SIMD (Single Instruction

Multiple Data

How to Utilize vectorization when:

» there are no loops in a hotspot function
(fri_intersect) ?

» the hotspot function is called on a linked list
(grid_intersect) ?

P Hotspots Hotspots viewpoint (char

AR . :
¥ Analysis Target

Analysis Type| | B8 Collection Log| | I Summary @& Bottom-up

Grouping: |Fun::h'un | Call Stack

CPU Time W Module Functio

1.298s tachyon.exe | tr_intersect
4.4315- tachyon.exe grid_intersect

1.213: [

04945)
0.3%:)

Function / Call Stack
B tn_intersect
grid_intersect
grid_bounds_intersect
[#full_shader
[Hsimple_point_light_shade_diffuse

tachyon.exe grid_bounds_inte
tachyon.exe full_shader
tachyon.exe simple_point_ligh

static void tri_intersect(censt tri * trn, ray * ry) {
vector tvec, pvec, qvec;
flt det, inv_det, t, u, v;

[* begin calculating determinant - also used to cal
CROSS(pvec, ry-»d, trn-sedgel);

[* if determinant is near zero, ray lies in plane o
det = DOT(trn->edgel, pvec);

if (det » -EPSILON &% det < EPSILON)
return;

inv_det = 1.8 / det;

/* calculate distance from vert® to ray origin */
SUB(tvec, ry-»o, trn->v@);

/* calculate U parameter and test bounds */
u = DOT(tvec, pvec) * inv_det;
if (u<@.e||u>le

return;

[* prepare to test V parameter */
CROSS(qvec, tvec, trn-redgel);

/* calculate V parameter and test bounds */
v = DOT(ry-»d, quec) * inv_det;
if (ve@d||u+v>1.0)

return;

[* calculate t, ray intersects triangle */
t = DOT(trn->edge2, quec) * inv_det;

ry-radd_intersection(t, (object *) trn, ry);

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Code change — new data structures

Composite triangles:
= SSE: 4 triangles, AVX: 8, Xeon Phi: 16
,,,,,, N = Structure Of Arrays: register containing 4/8/16
'4" " " {Ey? e yi float coordinates (x, y or z)
” "““ = Bit mask to describe ‘real’/'void’ triangles
A small library of vector operations (+,-,
s dot-, cross-product,...) using intrinsics

....... = Reused from Embree for SSE/AVX, extended
for Phi

Composite triangles

511

X8 X7 X6 X5 X4 X3 X2 X1

X16oYAd ... IXBoYBIXTY7AX6eY6IX5eY5IX4eYAEXBeY 3 IX20 20X oY Slngle C++ template InterseCthn (et al)
function

= No code duplication

Again, double ROI - improves both Xeon Phi and Xeon !

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Code change (cont’ed

templatedtypename T

struct ssef

: static veid tri simd intersect(const T* trn, ray * ry) {
enum { size =4 }; // number of SIMD elements t}rpedef typename T: rwvalue type value;
union { _ m128 ml28; float v[4]; int i[4]; }; // deta -
typedef typename T::scalar type scalar;
_ forceinline ssef () {3
_ forceinline ssef (const ssefk other) { ml28 = other.ml23; }

/* begin calculating determinant - also used to calculate U parameter */
const value D (scalar (ry-»d.x), scalar (ry-:d.y), scalar (ry-»d.z));

_ forceinline ssef® operator=(const ssefd other) { ml28 = other.ml2s; return

_ forceinline ssef(const _ml28k a) @ ml23(a) {} const value pvec = CNSS(D,tFﬂ-}EdgEE)j
_ forceinline operator const _ml128&(void) const { return ml23; }
_ forceinline operator _ m128&(void) { return m128; }

/* if determinant is near zere, ray lies in plane of triangle */

_ forceinline explicit ssef(const float® const a) : ml28(_mm_loadu_ps(a)) {} const scalar det = dot (tm >edgel FNEC) .
= - ¥ 3

_ forceinline ssef (const float® a) : ml28(_mm_castsil28_ps(_mm_sh
—forcelnl"sr et avnf
—fwcuﬂl{ const scalar absDet = abs{det);
_forcein]] enum { size = 8 }; // number of SIMD elements typename T::boolean type valid = trn-»defined & (absDet »= helper<scala
union { _ m256 m256; fleat v[8]; }; // data if (none(valid))
forceinline avxf .
forceinlin rqs () {} return;
“forceinlin __forceinline avxf (const avxf& other) : m256 (other.m256) {}
" farceinlin __forceinline const avxf cperator +(const avxf& a) { return a; }

__forceinline const avxf cperator -(const avxf& a) { const scalar inv_det = rep(det);

const _ m236 mask = _nm236_castsi2s6 _ps(_mm236_setl epi32(@xaecaecsn));
return _mm256_xor_ps(a.m256, mask); /* calculate distance from vert® to ray origin */
} const value 0 (scalar (ry-»o.x), scalar (ry-ro.y), scalar (ry-»o.z));
_ forceinline const avxf abs cor]st avxfd a) { . const value tvec = 0 - trn-»v@;
const _ m256 mask = _mm256 _castsi2S6_ps(_mm256 setl epi32(@x7fffffff));

return _mm256_and_ps(a.m256, mask); .
} () /* calculate U parameter (without test bounds) */

_ forceinline const avxf sign (const avxfd a) { return _mm256_blendv _ps(a const scalar U = dot(tvec, pvec) * inv_det;
_ forceinline const avxf signmsk (const avxf& a) { return mm256_and ps(a.m2

__forceinline const avxf rep (const avxfk a) {

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. ptimization Notice

SIMD benefits

* One intersection with multiple triangles at once

* Approach can be used for multi-rays intersections

= used by Embree and Autodesk’s ray tracer

« Small extra overhead during scene load (each grid cell rebuilds
its list of simple triangles to composites) but benefit in heavy
computations

* Intrinsics can be replaced with direct loops and compiler’s auto-
vectorization to improve portability

Again, double ROI - improves both Xeon Phi and Xeon !

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Re-running with Amplifier XE

Il i i) .] l. . '
cﬁ Bottorm-up B
Grauping: |FunctiunfCaIIStack 21 | L
Cache Usage Vectorization Usage T
Function/ Call Stack .
d - U alll= H.. Estimat.. Vecto.. L1C.. L2Com.. L1T..
Pgrid intersect 071 2413 3313 183810 0.005%
[[?'tri_simd_intersect AU, . . 13719 20155 429123 0.003
Dfull_shader 10,500,000 0997 329667 2939 1922 576000 0.001
[?'thread_tracecmppara|lel@1?8 15,400,000 0971 269591 3219 1339 46B18 0.008
[?'Iight_intersect] ojuld 0 - - U 0 1.000 0.000 1661 D0.969 0.000 0.000
[?'_kmp_wait_sleep 0 1.000 0.000 0.000 0.000 0.000 0.000
D_svml_powfls_mask - - 14,000,000 0968 107500 13645 26206 B25500 0.014
Pinfprm:rr nhigcts T00.000 0999 129000 NA3I9 0431 470000 0000
Selected 1 row(s 295,400,000 0953 121.055 13719 20155 429123 0.003 |«
Sl } }
Qb= 0.55 1s 155 2 255 Ruler Area
o [tachyon (0x1597 ™ T — ™ T S R P Frame
g COMP Worker Thre ™ ™ T — S S EI [v] Thread
£ |OMP Worker Thre & am m = a a a m m a = | g [] 2 Running
I e ————————— R
CIMP Warker Thre MHardwar..
Hardware Events 4 l I l l I I l I ' l [V| Hardware Eve...

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. ptimization Notice

Updated results —

Xeon'

@ Inside "

'“:ien' Phi

[T nodes x 2 SNB —
1023160 FPS 4 nodes x (2SNB + 1KNC) - 38> 291 FPS

350
&4 nodes x 1 KNC — 32->138
Xeon'Phi" FP S 200 .
250 -

% 200 B Xeon only
= o g 7X speed up! % 10 :iz;::::wc
Speead up on botn L2 |8

and Xeon Phi 10
50
0 _
Before After

Xeon and Xeon Phi add to each other

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Parallel programming for Intel architecture
Intel® Xeon and Intel® Xeon Phi™

Intel

Cluster
Studio

=

lme' inside

i@ inside

o Thread

Xeon'

.

Intel Xeon E5: Intel Xeon Phi:
- 8 cores Vector/SIMD Vector/SIMD Vector/SIMD Vector/SIMD 60 cores

- 16 threads 240 threads
- SIMD-256 SIMD-512

Parallelism at all levels, with Intel software tools. Maximize your ROI!

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Next steps

Experiment with prefetching

Replace intrinsics with plain C and rely on vectorization by
compiler

Experiment with replacing linked lists with arrays
Fine-tune with affinity settings (e.g. KMP_AFFINITY=balanced)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Summary

The application must meet certain criteria to benefit from Xeon Phi
You might need to apply reasonable efforts to achieve that

Good news:
* You can optimize for Xeon and benefit on Xeon Phi, and vice versa

* You use the same tools and programming models, same code

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Cloverleaf demo
Port to Intel® Xeon Phi™ with Intel® Cluster Studio XE

What is Cloverleaf?

Snapshots of a Cloverleaf simulation

 Small open source benchmark e Programmer’s
« Two dimensional compressible playground
Euler equations across Cartesian - CUDA
grid « OpenMP
» Fortran framework e MPI
» Fortran kernels « OpenCL
 ANSI-C kemnels « OpenACC

http://warwick-pcav.github.com/CloverLeaf/

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

A Partitioned Data Set

e On Xeons,

e simulation space split
into 16 regions

e Used MPI to run on
multiple cores

e On Xeon Phi
« 60 MPI tasks
4 OpenMP thread

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

What steps did you take to become
Intel® Xeon Phi™ ready?

» At first we had no access to any MIC hardware

* S0, development was carried out on a regular eight-core
workstation PC

 We knew that to make best use of the Intel® Xeon Phi™
coprocessor, our code should be

o well parallelized,

o well vectorized.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Anything went particularly well?

“We were surprised at how easy it
was to get the first version of
CloverLeaf running on the Intel®
Xeon Phi™ coprocessor. We
simply recompiled the existing
code using the -mmic compiler
option and ran executable natively
on the coprocessor”

What was the most difficult hurdle?

e Code originally not written with much consideration to how well
it would vectorise

o Compiler reports helped

o Compiler reports were sometime confusing, with multiple
message relating to one line

e Has to resort to looking at assembler

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Speedup

10000
CloverLeaf Benchmark Results
1000
oy
=
c
=]
L%]
i 100
a
E
=
10
Mesh Size: 1
1920 x 3440 x
240 x 240 | 480 x 480 | 960 x 960 1920 3840
Single Processor ** 7 28 179 781 3000
Xeon Phi *¥** 27 40 89 260 920
e Speedup 0.27 0.70 2.01 3.00 3.26

- 3.50

3.00

2.50

2.00

1.50

Speedup factor

1.00

0.50

0.00

**Single socket eight core Intel® Xeon® E5-2687W processor, 3.1GHz, 32GB DDR3(1333Mhz) memory, with both Turbo boost and Hyperthreading

enabled. *** Intel® Xeon Phi™ coprocessor had 61 cores, running at 1.09GHz, with 8GB of GDDRS5 (5.5 GT/s) memory.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

ptimization Notice

Using Intel Trace Analyzer Collector
(ITAC)

1 : - —
MName S| TSelf TSelf TTotal #Calls Tself jCall
= Group 211 Processes
- Croup Rpplicetion 534.354 = [N 1. 0:127=+3 = &0 15.572¢6 =
L. Group MPI 86.3115 = | 86.911% = 1089232 79.791%e-6 =

Running Cloverleaf natively on Xeon Phi with a 3840 x 3840 mesh size.

tal QDD S PTG E S5Ess .;I

Mame S| TSelf TSelf TTotal #Calls Tself fCall

EliGroup B11 DrOCeSSES e
- Group Application 122.33% s [z:c. 155 = 20 4.1133 s
L Group MPI 10z.06 = |G 103.06 = 4527860 2Z_.7613e-6 =

Running Cloverleaf natively on Xeon Phi with a 250 x 250 mesh size.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. ptimization Notice

Overhead is spread over a
number of MPI APIS.

- Group Applicaticon 1zz2.335 = [226.459 = 30 4.1133 s
E----HPI_Eum_size SeBe-& 3 boBe-& 3 30 18.3333e—-¢& 3
E----HPI_Eum_remk 1.108e-3 = l1.108e-3 = 30 3e.9333e—-4% =
- MPI Finalize 11.7121 s | 11.7121 s 30 330.402e-3 =
- MPI_ Isend 17.7572 = B 17.7572 = 1702750 10.4285e-& s
- MPI Irecw 3.64375 = |} 3_64375 = 1702750 5.66716e-6 =
f MPI Waitall a4z 3333 = [47 .33%% 5 1042500 40.8138e-% =
. MPI Barrier Z.5413 s | Z.5413 s 270 9_.41224e-3 3
- MPI_ Reduce 466.145e-3 = 466.145e-3 = 11550 40.358%e-6 =
‘. MPI_Allreduce 15.5313 = | 15.531% s 67350 273.61Ze-€ =

The breakdown of MP/ calls on the 250 x 250 mesh size.

Not enough work is being done
In each MP| task

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. ptimization Notice

Two essential tools

Intel® VTune Ampifier XE
Intel® Trace analyzer and Collector (ITAC)

Intel® Cluster Studio XE

Product Feature
Intel® Advisor XE Threading design assistant
Intel
» C/C++ and Fortran compilers C|US’[e_I'
* Intel® Threading Building Blocks Studio
Intel® Composer XE - Intel® Cilk™ Plus
* Intel® Integrated Performance Primitives XE

* Intel® Math Kernel Library

Intel® MPI Library High Performance Message Passing (MP1)

Library
Intel® VTune™ Performance Profiler for optimizing
Amplifier XE application performance and scalability

Memory & threading dynamic analysis for
Intel® Inspector XE code quality
Static Analysis for code quality

MPI Performance Profiler for
understanding application correctness &

Intel® Trace Analyzer
& Collector e i

Efficiently Produce Fast, Scalable and Reliable Applications. /nc/ud/ng on
| Xeon Phi

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. ptimization Notice

Intel® VTune™ Amplifier XE

Performance Profiler

Where is my application...

Spending Time? Wasting Time?

unction ~ - AEM_LOA
3.560 (I
o_xform < || 3.560s _
+ algorithm 1412 (1

+BazeThreadInitThi 0.000s |

475 £loat rx, ry, rz I
float paraml = (A2
float paramz = (A2

478 bool neg = {rz < (

 Focus tuning on functions
taking time

» See call stacks

» See time on source

» See cache misses on your
source

» See functions sorted by
of cache misses

* Windows & Linux
* Low overhead
* No special recompiles

Waiting Too Long?

Wait Timew

) Wait
‘Ell-: lIu:Ir:aI Count

» See locks by wait time

* Red/Green for CPU
utilization during wait

Advanced Profiling For Scalable Multicore Performance

VTune Amplifier is a simple tool

Imagine you have a cool car and you want to drive a little faster or fuel effective

All what you'd need you can find here.
VTune as other simple tools can provide basic information on performance of your engine.

™~
BRAKE

) L40 =T 120 rso 120 2
$ 200"

- 140~

160

An example of user mode analysis...

/Function /Call Stack [=] CPU Timew ¥ Module * (O e
=l NumInRow 965.665ms (I Sudoku_c.exe I w &, Problem Sources Modules
1. MumberinRow < DoWork < FillPos| 965.665ms [N Sudoku_c.exe P1 Unhandled application exception functional Sudoku_c.exe
= F. Solve < Solve < Solve < Solve | 955.727ms (NN Sudoku_c.exe p2 My Cross-thread stack access Generator.cpp: main.cpp Sudoku_c.exe New
[= T Solve 945.720ms (NN Sudoku_c.exe P3 Fiiy Cross-thread stack access [Unknown]; xutility Sudoku_c.exe; libiompSmd.dil P Not fixed
=T Solve 915.692ms (N | Sudoku_c.exe 21 (=] Data race Generator.cpp Sudoku_c.exe B Mot fixed
=™ Solve 865.668ms (NN Sudoku_c.exe P5 =] Data race main.cpp Sudoku_c.exe Bt Mot fixed
5 Solve 815.639ms (N Sudoku_cexe |= P& @ Data race xtree Sudoku_c.exe Bt Mot fixed
5™ Solve 765.533ms (— Sudoku_c.exe P? =] Data race xme mory; xtree Sudoku_c.exe Bt Mot fixed
I 3] =] Data race Amemory; xiree Sudoku_c.exe Bt Mot fixed
T main < _tmain| 59.943ms @ Sudoku_c.exe P9 @ Data race Xmemory; xtree Sudoku_c.exe Mew
= [naTn © _t[naTnCll‘ 50.106ms @ Sudoku_c.exe P10 @ Data race xmemory; xtree Sudoku_c.exe Mew
- main ¢ _tmainCRTSt 50.028ms Sudoku_cexe P11 @ Data race Xme mory; xtree Sudoku_c.exe Mew
™. main < _tmainCRTStart 50.025ms Sudoku_c.exe
. main < _tmainCRTStartup 30.028ms |) Sudoku_c.exe —
. main < _tmainCRTStartup < 10.007ms | Sudoku_c.exe
F. main < _tmainCRTStartup < Bas 9.938ms | Sudoku_c.exe :“““
= NumInColumn 700.684ms (N Sudoku_c.exe E
F. NumberinColumn + DoWork < Fill 700.684ms (RN Sudoku_c.exe =
o Selected 1 row(s): 705.584ms - % @
< [y NN [} | 3 fr}
i Concurrency - Hotspots by Thread Concument Intel VTune Amplifier XE 20 o=
® At Tuget| | - Anakrdhs Trpe i e a 1 2 E] El 5 & E o L 10 11 12
i il Stak - PR Wi by Uhilicalioers a3 o..':.q Wad Time by Ubilication Mol Im“u' Wabrg - i iy _ Ieal iy uet
Dk BPooct D0k Bldeal § 0w U%e JPecx D0k Whiead B0 v 1 sackis) s, Ve 4 Dol 3 Simultaneously Running Threads
= $betiane A5 L 475 (e 3032 (I Sudoku cent SiEetiae S
. ol e o s - -
| [rutom ceresmmncnes motpnerss P8 Concurrency - Hot:
i it & Analysis Target Analysis Type | | B Summary e Top-doven Tree

CPU Time by Uti * [owerhead Wait Time by Uil
Didle @ Poor [0k @Ideal @ Over TMe g @Poor Dok @I | stack(s) selected, Viewing 4 1of 1
HHSSEHasNumber 120.9235 L oms| s | .
alve 62,433 DI ims 0.001s Current stack is 100.0% of selection

kmp_execute_tasks 11.020s @ 0ms os 100.0% (120.923s of 120.923s)

epEx 7.329s @ Oms 0s

[wiaiting

fFunction /Call Stack =

[Unknown]

mp_fork_barrier 5.548s @ Oms 0s
) main 2R27< Ml 79 QR mc nonic
Selected 1 rowris): 1209235 Oms -
< vl i | 3
Thoead Comumeeny | | y " " T
1 — — = — o 55 105 155 205 255 + | Threads

[running
I waits
[b R0 Time
T=¥ OpenMP Re...
Transitions
CPU Usage
il CPU Time
Thread Concurrency
LWk Concurrency

R Tt oty | T e S |

'OMP Worker Thread #...

Threads

1. Hotspot Analysis

2. Implement

3. Find Threading Errors
4,5,6. Tune Parallelism

CPU Usage

Thiead Concurrency

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. ptimization Notice

VTune Amplifier is a complex tool

However, if you want your car to win a race...

r

Your tools set has to be much more complex to analyze all aspects of engine functioning.
You need to be more proficient in both: the tool's functionality and the engine internals!

"?;ﬂmuuuuulllllll

T+ —— F s — jren i i . III_I.II
E +00.8 » ® +02.3 = o ,
mph

FUEL TRIMS TIMING ¥ _i

1521 790 +|| 05 : T3 AVERAGE FUEL ECONOMY

SPEED & RPM

1]

CATALYST o ¥ COOLANT

. 24' ﬂ %] ??‘ ke
.52 o o FUEL LEVEL RANGE
+0.3 217 255 o 1 2
*] hp (18] ﬂ' 4 g @
o ACCEL FPOWER TOROUE EUEL ELOW

R e o o e

- o~

=TT T T~ -~ \\
- \\\\ // \\
Proﬁré the System RNy //Prof ile Applications N
/ . N / = {E,‘r' Algorithm Analysis \
=-{Z Algorithm Analysis N / : \
I N / L e ,ﬁ, Basic Hotspots \\
I / P
I f4 Advanced Hotspots AN | ; ‘l
] A | e ;ﬁ; Concurrency |
L | LA Locks and Waits
\ I ’ /
\\ | User Mode
\ | /
- Works off
| . /
\ | In/tg%

\\! -/Pron-lntel
\\\\ ~ ’///.
\~~=~__ Architectural Analysis \ Rl More

\ overhead
\ EI B Ad'u'an{-r:d Intel(R) Mi[malthtecture Code Mame Sandy th
\\ S ,!'5, General Exploration \\) an]
\\ #'51 Bandwidth \\ ||ghtwe|ght
N . & Access Contention | hotspots
Kernel Mode ~ # Branch Analysis |
\\ P ,E'., Client Analysis |
Works onIy on N\ #'5‘ Core Port Saturation I’
e Intel N b ,E'., Cycles and uOps /
\ ﬂ I_mp Aml}-sﬁ //
\\,ﬁ, Memory Access
- },\F‘ﬂ-rt Saturation _~

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Optimization Notice

An example of architectural analysis

No Auto- With Auto- Speedup
Vectorisation |Vectorisation

Speeddlfp by 39.344 21.9 1.80
sznpf;;i g Core 2 5.546 \uﬁs\1o.77
B Speedup 7.09 45.52 76
MRNNANANYNN, Vo ddddd \ }
BB L& I Y
s Speedup by swapping compiler
8883308
mm— CPU EVENT Without Vect With Vect
CPU_CLK_UNHALTED.CORE 16,641,000,448 1,548,000,000
Verified | INST_RETIRED.ANY 3,308,999,936 1,395,000,064
using VTune X87_OPS_RETIRED.ANY 250,000,000 0
| SIMD_INST_RETIRED 0 763,000,000

Full paper available here:
http://edc.intel.com/Link.aspx?id=1045

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Trace Analyzer and Collector Overview

- ™~

Intel® Trace Analyzer and Collector
helps the developer:

» Visualize and understand parallel
application behavior

Intel® Trace
- Collector library

OR

Intel® Trace
-------------- -~ Collector library

= Evaluate profiling statistics and load
balancing
OR

Binary Instrumentation

Intel® Trace
Collector library

= |dentify communication hotspots

Executable

Instrumented Instrumented Instrumented
Executable Executable Executable
Node1l NodeZ2 NodeN

Traces
Files

Intel®
Trace
Analyzer

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Trace Analyzer and Collector

File Stvle ‘Windows

Help F1

‘Wiew Charts Mavigate Advanced Layvout Comparison

A CAict/traces/poizzon_sendrecy. zingle. stf

B: C:fict/traces/poizzan_icomm. single. stf

0.069[500 = | 0.0%70 500 = 0.071 500 = | -
0.070000 = 0.0%71 /000 = 0.0%72/000 =

P

PO
F1
P2
P3
Y- pplicalhiFl

02500 = 0.063 500 = [0.064 500 = -
0D.063/000 = 0.0ed4/000 =

e T Blue = computation
pplic atin 137 e Red = communication

Application h- pplication

Wapplication

Compare the event
timelines of two
communication profiles

A ppiichdPl Application fohdy pplication b, pplication Pl
W

R/ A pplication fubA P Application MP

i
MELME

Applic.MP & pplication

ApplicetPl & pplication Lpplication A pplication

&pplication R nnlication r&pplication

Application Bk pplication it pplication

&pplication et ation LA pplication

whedpplication

-t

Flat Prafile I Load Balance I Call Tree I '\ Total Time B4 [1] (Sender by Receiver]
Group All_Processes LI
B |TSeIf ITSeIf i |TTc Fil F| Py F{ F{ F} Pt F| P4 F{ F] Pl Pl Pl F] F] 59 b= 2_340.
E-iGoup All_Processes E'ID : 4. | 2.080
-~ Group Application 0.898 rl = I B = 1?:3
- Giroup MPI 0.259 I 3 } b= . .
e 1.300] Chart showing how the
> il 1.040{
PE et il L H
P _ T L.7e MPI processes interact
atd il 0.520
P8 e W e s
| | 2 ! | L|—I 0 nnn.
0,069 045, 0,072 438: 0,003 393 All_Processes Major Function Groups Tag Filter
[
0,062 450, 0,064 574: 0.002 124 All_Processes Major Function Groups Tag Filter

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. ptimization Notice

Communication Profiles

Statistics about point-to-point or collective communication

Generic matrix supports grouping by several attributes in each
dimension
Sender, Receiver, Data volume per msg, Tag, Communicator, Type

Available attributes: Count, Bytes transferred, Time, Transfer rate

S Total Time [s] (Sender by Receiver)
I
gl
PO Pi P2 P3 P4 Ps P& P7 Sum | Mean | StdDew
PO 74.641| 74641 0.000| 7q
o0 Total Time [s] (Collective Operation by Process)
P1 §9.152f 34.578f 10.673 e
Sum |Mean | StdDev
P2 51.520| 99.551f 49.776) 1.814 i
St g MP|_Barrier 0.063 0.052 0.040 0.180 0.258 0.086 0.07% 0.215 [EEGECTCY SRR B Bt
P3 ‘41_508| 35904 78.508| 39.254] 2.351
i 3 54 0.000 0.860 0.865 0.857 0.853 0.855 0.860 0.251 [EESRNU BT i-3 | I BT e
=7 51.558 54,114 105.672) 52.836| 1.278 82
49 MPI_Allreduce GIFY 603.576| 110.447 18.704
P5 T73.146) 36.073) 1.811
k| 44 Sum 87.362| 121.530| =8.3%0| 128_818| 90.182|125.187| 110.268| 138 141| 830538
P& 3| 73.490| 36.740[0.879
| 41
i
P7 24.384| 22_384] o.o0o| 39 Mean 29.121| 40.530| 29.663 42.939| 30.061| 41.729| 36.756| 46.047 37,1086 i
Sum e ek e [b (e st Bl bl L] StdDev 41.139| 56.675| 41.312| 59.993| 41.727| S58.383| 51.318| 64.359 £2.973
Maan 23.903) £3.116| 43.437| 49,759 37.394| 45.868| 29,323 35.861 42.681] 29
StelDav 0.000f 11.536 1l.822 1.738 0.430| B.2148| 4.93% 0.000 12.629%

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. ptimization Notice

Typical Hands-on Xeon Phi
training agenda

Day 1 — Getting Ready 25th & 2@th
10.00 Welcome

10.30 Two Essential Requirements June 2014
11.00 Parallelism (L) Manchester
12.30 Lunch

1.30 Vectorisation (L)
4.00 Advance Profiling (Walkthrough)
5.00 End

Day 2-Xeon Phi Programming

09.00 Start

09.15 Native & Offload Programming for Xeon Phi (L)
11.30 A Case Study

12.00 Lunch

1.00 Vectorisation on Xeon Phi (L)

1.50 Parallelism on Xeon Phi (L)

3.40 Wrap-up

4.00 End

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

	Two examples\case studies �using Intel® Xeon™ Phi
	Tachyon ray tracer
	Project goals
	Tachyon ray tracer
	Computational modes
	Tachyon algorithm
	Known issues of the algorithm
	Extra challenge - imbalance across Xeon and Xeon Phi
	Porting: Efficient apps for Xeon Phi
	Target execution model – Symmetric MPI
	Build for Xeon Phi
	Why ‘–fp-model fast=2’ ?
	Run…
	First results
	Using Intel® Trace Analyzer and Collector
	Using VTune™ Amplifier XE
	Using VTune™ Amplifier XE
	Conclusions
	Improvement directions
	#1 - Dynamic MPI scheduling
	Code change
	Re-running Intel Trace Analyzer and Collector
	Re-running Intel Trace Analyzer and Collector (cont’ed)
	#2. Improve OpenMP parallelism
	Code change
	Re-running with Amplifier XE
	#3. Exploiting SIMD (Single Instruction Multiple Data)
	Code change – new data structures
	Code change (cont’ed)
	SIMD benefits
	Re-running with Amplifier XE
	Updated results
	Parallel programming for Intel architecture�Intel® Xeon and Intel® Xeon Phi™
	Next steps
	Summary
	Cloverleaf demo
	What is Cloverleaf?
	A Partitioned Data Set
	What steps did you take to become Intel® Xeon PhiTM ready?
	Anything went particularly well?
	What was the most difficult hurdle?
	Speedup
	Using Intel Trace Analyzer Collector (ITAC)
	Overhead is spread over a �number of MPI APIS.
	Two essential tools
	Intel® Cluster Studio XE
	VTune
	Intel® VTune™ Amplifier XE�Performance Profiler
	VTune Amplifier is a simple tool
	An example of user mode analysis…
	VTune Amplifier is a complex tool
	Slide Number 53
	An example of architectural analysis
	ITAC
	Intel® Trace Analyzer and Collector Overview
	Slide Number 57
	Communication Profiles
	Typical Hands-on Xeon Phi �training agenda

