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Essential Requirements for
Programming on the Intel® Xeon Phi™
Coprocessor.

In this session, the ingredients for successful Xeon Phi ™
Programming are discussed. We look at a the experience and
results of porting an application to run on the Intel® Xeon

Phi™. We look at: What went well in the project; How difficult the
project porting was; Useful tips and tricks; A comparison of
performance on Xeon Phi™ and non-Xeon Phi™ platforms.
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Inte|® Para"el StUd|0 XE « Intel®Parallel Advisor

Use to model parallelism in your
existing applications

e Intel® Composer XE
Use to generate fast, safe,

Amplifier Composer parallel code (C/C++, Fortran)
= XE * Intel®VTune™ Amplifier XE
. , Find hotspots and bottlenecks in you
« Profiler e code.

. Ubrane% » Intel® Inspector XE
Co Use to find memory and

z threading errors
Inspector XE

Iﬁp * Memory Errors
* Parallel Errors

+ Advisor

Four Components
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® CIUSter StUd|0 XE « Intel®Parallel Advisor

Use to model parallelism in your
existing applications

HP,___@cé

Analysis?
* Intel® Composer XE
Trace Composer XE Use to generate fast, safe,
Analyzer and - Compiler parallel code (C/C++, Fortran)
Collector —+Libraries | e Intel®VTune™ Amplifier XE
COI Find hotspots and bottlenecks in you
code.
Amplifier XE s> » Intel® Inspector XE
«Profiler Use to find memory and

threading errors

Inspector XE e Intel® MPI

*Memory Errors A Industry standard message passing
*Parallel Errors g interface library for parallelism
across clusters

+ Advisor

e Intel®Trace Analyzer and
Collector (ITAC)

Examine runtime behaviour of programs
running on clusters.

Six Components
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Application Performance: Intel® Xeon Phi™ Coprocessor

Ratio KNC/ES Peak Performance (per processor)

= 0.00-1.00 = 1.00-2.00 = 2.00-3.00 =23.00-4.00 w=400-5.00 =5.00-6.00 =™o6.00-7.00 =7.00-8.00

90% 100%

http://iwww.intel.com/performance
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The Same Source Change Improves
Performance on Both Targets
4000 Options per second
The Same 50urce Change I Intel® Xeon® Processor ES. Intel® XeonPhi™
Performance on Both T¢ Parallelization and vectorization together improve option per second
by > 800X and by >50X
o0 HOW DO WE GET THERE?
“ IDF2012
00 s  Performance data generated by Shuo Lias part of SFTLO03Hands On Lab ~ '"'®feeorsromn
00 The Same Source Change Improves
o | Performance on Both Targets
Vectorised =0 1
19 Performance data generated by Shuo Li as part of SFTLO03Hands On La i: :Z:HS@'H
:: i Options per second
Parallel
; ; IDF2012
On the graphs' blgger is better 7 Performance data generated by Shuo Li as part of SFTLO03Hands On Lab " oreermrens
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Vectorisation
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4 Generation Intel® Core™ processor family

Load Buffers, Store Buffers, Reorder Buffers, Allocate/Rename/Retire

Scheduler
T EEER T T

bbb b

ALU A LD LD
FMA, FP MUL | FMA, FPADD/MUL JMP N — STA STA ’ STD | ’ STA |
SIMD MUL SSE ADD SIMD/FP Shuf
FDIV SIMD ALU SIMD ALU
Branch 2 Slow Int SIMD LOG

0 63 127 255 * v '
T 1 T t Memory Control

L1 Data Cache
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Use Performance Libraries (e.g. IPP and MKL) Ease of use

Compiler: Fully automatic vectorization :l_ Implicit /\

O
O
D
L ——
@) Cilk Plus Array Notation (a[:] = b[:] + c[:])
e —
O
o Compiler: Auto vect. hints (#pragma ivdep, ...)
>
U) L Explicit
C User Mandated Vectorization (SIMD Directive
g /OpenMP 4.0)
| -
(qD) Manual CPU Dispatch (__declspec(cpu_dispatch ...))
C _
— SIMD intrinsic class (F32vec4 add)
O
e 4 s Instructi
U; 8 Vector intrinsic (mm_add_ps()) — ar:;arrléc 'Ov
© O
; O Assembler code (addps) Programmer control
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Overview of Writing Vector Code

_ Elemental Function
Array Notation
__declspec(vector)

Al:] = B[] + C[]; float ef(float a, float b) {
return a + b;

}
Al:] = ef(BL:], CLD);

SIMD Directive Auto-Vectorization
#pragma simd for (inti=0;i<N; ++i) {
for (inti=0;i<N; ++i) { Ali] = BI[i] + C[il;

Ali] = B[i] + CIi; }

}

'n" t © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.



Explicit Vector Programming with
SIMD Pragma/Directive

Programmer asserts:

*pis loop invariant
A/] does not overlap with Bf] or C/f]
sum not aliased with Bf] or C/f]

sum should be treated as a reduction

#pragma omp simd reduction(+:sum)
for(i = 0; 1 < *p; i++) {

ALi] = B[i] * C[i];

sum = sum + A[1];

}

Allow compiler to reorder for better vectorization

Vector code should be generated even if efficiency heuristic does not

indicate a gain in performance

Explicit vector programming
lets you express what you mean!

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice




How do | know if a loop is vectorised?

* -vec-report

> 1cl /Qvec-report MultArray.c
MultArray.c(92): (col. 5) remark: LOOP WAS VECTORIZED.

Qvec-report1 (default)
Qvec-report2
Qvec-report3
Qvec-report4
Qvec-report5
Qvec-reportb
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E3 Bitvise xterm - Winnersh-KNC-lab-sbe.tlp - 172.28.35.61:22

[sbe@snbws3 lab-211% vecanaly51s py --annotate vec7.txt
Writing pi_vr.c ... don
Statistics for all Flles

Source Locations
Message Count p4
vector loop cost: 3Z.000000, 66.7%
type converts: 2. A
unroll factor set to 4. 66.7%
LOOP WAS VECTORIZED. 66.7%
loop inside vectorized loop at nesting level: 1. 66.7%
remainder loop was not vectorized: 1 66.7%
vector loop cost: 59. 000000, 66.7%
medium-overhead vector operations: 66.7%
heavy-overhead vector operations: 66.7%
conversion from int to float will be emulated. 66.7%
66.7%
66.7%
66.7%
66.7%
66.7%
66.7%
66.74
66.7%
66.74

scalar loop cost:

loop was vectorized (no peel/with remainder)

estimated potential speedup: 6.010000.

llghtwe19ht vector operations: 3Z.
1ghtw91§ht vector operations:

estimate potentlal speedup: 3. 150000,
divides:

REHAINDER LO0P WAS VECTORIZED.
remainder was vectorized (masked)
Total Source ocations:

WORMNMMNMNMNNNNMNMNMMN RN RN




™ Lightweight Hotspots - Hardware Is vith Intel VTune Amplifier XE 2

@ Analysis Target Analysis Type | M Summary s TopB

Hardware Event Covns

Groumg: | sl |l Sk Hardware Event Samphe Counts

Hardware Ev... Hardware Ev..
Function / Call Stack Hardware lssues i) Sowce File Vector é
CPU_CL..» ™ INST RETIRE.. Instruction

# |Loop@0:A0dash at line 381 in grid_intersect] 1402220698 1451822066 08 ne 561 in 9. grid.cpp S5E2 MOVED_XMM

8 [Loop@0d0dda0 ot line 559 in grid_intersect] BB 2N9TTME 1 ne 559 ing... gnd.cpp 85E2 ADDSD; COMISD: MOVSD_XMM

5 {Loop@0ul0dadd ot line 600 in grid_intersect] G616 98013 1T  gridepp $SE2 MOVSD XM

i |Loop @il at ine 562 in grid_intersect] 53850088 45107993 1 ing.. gridepp S5E2 MOVSD_sMM

#Loop@0d0T8cd ot Iine 111 in shader] 03ME3  2M840 0 . shade.cpp SSE2 ADDSD: COMISD: DIVSD: MOVAPD: MOVQ: MOVSD_XN
# [Loop@0al0dDa at line 193 in cellbound) ATSTAD) 2802190 1694 Tind heipolsea [LoopCUld . gridicpp $SE2 COMISD: MOVAPD: MOVSD_ XMM

# |LoopB0:G3a0d8 in func@0ifialle) 4753385 2068 314 [Locp@Odifiiae in func@0f .. [Unknown source.§ 55E2 MOVDOA

H [Loop@0uFaacTf in funcShatisach]) 0 0 0000 msvert.dil [Loop@Oaf5acT in funcBObf ... [Unknown source.§ S5E2 MOVDQA

i |Loop&0wi0ce 4t line 153 in globalbound] 0 0 0000 find_hotspots.exe [Loop@Cullce® ot fine 155 m gl... grid.cpp 5562 COMISD; MOVAPD: MOVED_XMM

# |LecpE0a031 <0 at line 165 in shadow intersection] 0 2142765 0000 find_hotspots.exe [Loop@0ud031c0 at ine 165 ins... intersect.cpp éSEE COMID

Vector Instruction Class
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™ Lightweight Hotspots - Hardware Is
@ Analysis Target
Grouping: | Functon / Cal Stac

Function / Call Stack

Hardware Ev... Hardware By,
CPUCL..» ¥ INST RETIRE..

Hardware Event Samphe Counts
Hardware lssues

all) Source File

Intel VTune Amplifier XE 2

Vector Instruction Cla
Instruction Set uction Clazs

1402220698 1461822066 0g MoBPOl
B0 219TI046 1] Extended Sleep States

# |Loop@&0aildao at line 581 in grid_intersact]
8 [Loop@0d0dda0 ot line 559 in grid_intersect]

ne 381 in g... gnd.cpp S5E2
ne 559 ing... gnd.cpp 85E2

MOVSD_XMM
ADDSD; COMISD: MOVSD_XMM

)

The feature is enabled in AXE 2013 Update 4

set AMPLXE EXPERIMENTAL=vectinfo
amplxe-cl -collect lightweight-hotspots -knob enable-stack-collection=true -- application.exe
amplxe-cl -E hw-events-vect

Hardware Events

Tirmehine Hardware Event: Bﬂ_II‘Erj.E‘I‘IRE:I.rnEm_T#B{ B4 Call Stack Mode Iniline Mode m:L-IF Mode -_ | Any Vector Instruchon Set

y [89.6%] [Linknown]
1 (10.4%] 552
L [0.0%)] 558

=
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Scalar and Packed Instructions

addSS Scalar Single-FP Add g
f \
]1 Clovl !
i 1
. . ‘\ 1
Single precision FP data [ +y1 /,'
Scalar execution mode T
. // x4 X3 X2 )21\\
addpPS Packed Single-FP Add ) N
/ \
]‘ \ y4 y3 y2 yi | |
\\ /,
Single precision FP data %4 ey 4| x3+y3 | x2+y2 | xL+ i
Packed execution mode Sniet— —
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Examples of Code Generation

static double A[1000], B[1000], -Brlnc-)s;gs o e
) (:[1000]; Xorps xmmO, xmmO
void add() { cmpltpd  xmmO, xmm2
int 1; movaps xmml, B[rdx*8]
for (1=0; 1<1000; i1++) andps xmml, XmmO
if (Alil1>0 - andnps xmmO, C[rdx*8]
AEi% 1: %[i]' orps xmml, xXmmO
else ’ addpd xmm2, xmml
. _ movaps A[rdx*8], xmm2
ALr] += CL1l; add rdx, 2

: N o ™ SSE2

‘lL .B1.2::

.B1.2::

movaps xmm2, A[rdx*8]
vmovaps  ymm3, A[rdx*8] XOrps xmmO, XmmO
vmovaps  ymml, C[rdx*8] cmpltpd  xmmO, xmm2
vempgtpd  ymm2, ymm3, ymmO movaps xmml, C[rdx*8]
vblendvpd ymm4, ymml,B[rdx*8], ymm2 blendvpd xmml, B[rdx*8], xmmO
vaddpd ymms, ymm3, ymm4 addpd xmm2, xmml
vmovaps  A[rdx*8], ymm5 movaps A[rdx*8], xmm2
add rdx, 4 add rdx, 2
cmp rdx, 1000 cmp rdx, 1000

jl .B1.2 AV X jl .B1.2 SSE4.1

i@SlFlZm

2
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Vectorization Report

“Loop was not vectorized” because:

— “Existence of vector — “Subscript too complex”

dependence” — ‘Unsupported Loop Structure”

— Non-unit stride used — “Contains unvectorizable

— “Mixed Data Types” statement at line XX”

— “Condition too Complex” — "Not Inner Loop”

— "vectorization possible but
seems inefficient”

— “Condition may protect
exception”

— “Operator unsuited for
vectorization”

— “Low trip count”

e.g. function
calls

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice



Parallelism



Speedup USing para”e“sm Parallel Code

Find the Hotspots

Implement

Parallelism

o -

@ m Check for Errors

£

EBS (XE only)

Cilk Plus Debu
g Tune Parallelism

Amplifier XE

IPP

Inspector XE
Threads
Memory

Four Step Development

£a
X@%
s-ch
O B
dmBl SN [}
— 02
'—10§
D-.gg
=l K &
<
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Language 10 help para”ellsm Parallel Code

#pragma omp parallel for

Intel® Cilk™ Plus for(i=1;i<=4;i++) {
printf(“lter: %d”, 1);

OpenMP ¥
Intel® Threading Building Blocks
Intel® MPI
Fortran Coarrays

OpenCL
cilk_for (int i = @; i < max_row; i++)

{ -
-{For (int j = ©; j < max_col; j++ ) Natlve Threads

}
}

p[i][j] = mandel( complex(scale(i), scale(j)));

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice



How many threads ?

“An application must scale well past
one hundred threads to qualify as
highly parallel”

oo
High Performance

Jim Jeffers

James Reinders.
ISBN: 978-0124104143

8 [
]




Parallel Performance Potential

Intel Xeon Phi coprocessor Peak

1800 -
1600 ( intel') inside"
1400 Xeon Phi )

1200 -

1000

8OO

k./
800 Qé
0“
) Ko
|5 ) cdz.-
S a0 4
(1]
=
LS 200
|
Q
o
ﬂ AR AR R L AR RN RN AR A N RN RN AR RN RANRERNRINAR
— o — (¥l — w — w — w —~ — (Vs ~ D — — o o~ w — o
mmmmmmmmmmmmmmmmmmmm
= e e e
Threads

If your performance needs
are met by a an Intel
Xeon® processor, they will
be achieved with fewer
threads than on a
coprocessor

On a COpProcessor.

= Need more threads to achieve
same performance

= Same thread count can yield
less performance

Intel Xeon Phi excels on highly parallel applications

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.
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Intel® Xeon Phi™



What is it?

* Co-processor

— PCI Express card

— Stripped down Linux operating system (busybox/dash)
* Dense, simplified processor

— Simplifications for power savings In-order

— Wider vector unit

— Wider hardware thread count
* Lots of names

— Many Integrated Core architecture, aka MIC

— Knights Corner (code name)

— Intel Xeon Phi Co-processor SE10P (product name)

THE UNIVERSITY OF TEXAS AT AUSTIN
TA@@ TEXYAS ADVANCED COMPIITING CENTER



Intel® Xeon Phi™ Architecture Overview

Cores: 61 core s, at 1.1 GHz
in-order, support 4 threads
512 bit Vector Processing Unit
32 native registers

8 memory controllers
16 Channel GDDR5 MC
PCle GEN2

ring interconnect

Reliability Features
Fully Coherent L2 Cache

Parity on L1 Cache, ECC on memory
CRC on memory 10, CAP on memory 10

|
“' M M M - 4-
/ ' Gy j
I I
High-speed bi-directional = = *e = =
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Core Architecture Overview

60+ in-order, low power |IA cores in a ring
Instruction Decode interconnect

Two pipelines

= Scalar Unit based on Pentium® processors

Registers Registers = Pipelined one-per-clock scalar throughput

!

= Dual issue with scalar instructions
e

32K L1 I-cache SIMD Vector Processing Engine
32K'L1 D-cache

0 4 hardware threads per core

512K L2 Cache = 4 clock latency, hidden by round-robin scheduling of
i threads

= Cannot issue back to back inst in same thread

Coherent 512KB L2 Cache per core

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice



Key Differentiators
Xeon Phi vs Workstation

More COres

siower Clock Speed
wider SIMD registers
Faster Bandwidth
in-order Pipeline




A Tale of Two Architectures

Intel® Xeon® processor Intel® Xeon Phi™ Coprocessor

Sockets 2 1
Clock Speed 2.6 GHz 1.1 GHz
Execution Style Out-of-order In-order
Cores/socket 8 Up to 61
HW Threads/Core 2 4
Thread switching HyperThreading Round Robin
SIMD widths 8SP, 4DP 16SP, 8DP
Peak Gflops 692SP, 346DP 2020SP, 1010DP
Memory Bandwidth 102GB/s 320GB/s
L1 DCache/Core 32kB 32kB

L2 Cache/Core 256kB 512kB

L3 Cache/Socket 30MB none

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.
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Theoretical Peak Flops Performance
Example

Two socket Intel® Xeon® E5-2670 Processor

Freq Num FP Ops GFlops
Cores
2.6 2 666

2

Single card Xeon Phi Coprocessor (BO)

Freq Sockets Num Vector FP Ops GFlops
Cores | Width

1.091 2 (using FMA) 2,128

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice



Synthetic Benchmark Summary (Intel® MKL)

4 N\ N
SGEMM (GFrs) DGEMM (GFrs)
2000 4 Up to 2.9X 1000 Up to 2.8X
Higher is Better 1,860 Higher is Better
1,729 883
833
800 -
1500 -
600 -
1000 - = U - L1
o (5 (5 5
(@) &) (@) ‘O
= = 400 - i =
i [ iz [
2 2 X X
To)
200 -
— —
Xeon' Xeon'
0 - 0 -
E5-2670 5110P  SE10P  (61C, E5-2670  5110P (60C, SE10P  (61C,
Baseline (60C, 1.1GHz, 300W) Baseline 1.053GHz,  1.1GHz, 300W)
(2x2ﬁ<gvHvz), 8C, 1.2223/!? (2x 2.6GHz, 8C,  225W)
\_ Y, \_ 115W) )

4 N\ N
SMP Linpack STREAM Triad
(GF/s) (GB/s)

Up to 2.6X Up to 2.2X

1000 - Higher is Better 200 - Higher is Better
174
803
800
150
600
i € 100
.0 2
(S} o
400 = E
iz [
= N
~ 2 50
200
II'-I‘E‘D inside” -‘_-D inside™
= e (inte —
Xeon' Xeon'
0 0
E5-2670  5110P  (60C, SE10P  (61C, E5-2670 5110P (60C, SE10P  (81C,
Baseline 1.053GHz,  1.1GHz, 300W) Baseline 1.053GHz,  1.1GHz, 300W)
(2x2.7GHz,8C,  225W) (2x 2.6GHz, 8C, 225W)
S 115W) ) \_ 115W)

J

Coprocessor results: Benchmark run 100% on coprocessor, no help from Intel® Xeon® processor host (aka native)

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you

in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Source: Intel Measured results as of October 26, 2012 Configuration Details: Please reference slide speaker notes.
For more information go to http://www.intel.com/performance
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Intel® Xeon Phi™ Coprocessor:

Increases Application Performance up to 10x
Updated
vs. 25 Xeon™®
Acceleware 8% order isotropic Up to 2.23x
variable velocity
El= Sinopec Seismic Imaging Up to 2.53x2
CNPC GeoEast Pre-Stack Time Up to 3.54x2
{China Ol & Gas) Migration (Seismic)
Financial Services Financial Services BlackScholes SP Up to 7.5x
Maonte Carlo SP Up to 10.75x
Physics Jefferson Labs Lattice QCD Up to 2.79x
Finite Element Sandia Labs miniFE Up to 2x3
(Finite Element Sohwer] Up to 1.3x5
Solid State ZIB Ising 3D Up to 3.46x
Physics {Zuse-Institut Berlin) (Solid State Physics)
Digital Content Intel Labs Ray Tracing Up to 1.88x4
Creation/Video (incoherent rays)
NEC Video Transcoding Up to 3.0x2
CSIRO/ASKAP tHogbom Clean Up to 2.27x
(Australia Astronomy) (Astromomy image smear
Astronomy (I
TUM (Technische S5G++ (Astronomy Adaptive Up to 1.7x
Universitat Minchen) Sparse Grids/Data Mining)
Fluid Dynamics AWE (Atomic Weapons Cloverleaf 1.77x%
Notes: Establishment - UK) (2D Structured Hydrodynamics)

1. 25 Xeon® vs. 1 Xeon Phi* (preproduction HW/SW B Application running 100% aon coprocessor unless otherwise noted)

2, 25 ¥eon® vs. 25 Xeon® + 2 Xeon Phit {Efﬁuad]

3, 8 node duster, each node with 25 Xeon® (comparison is duster performance with and without 1 Xeon Phi* per node) (Hetero)
4, Intel Measured Oct, 2012




Programming Models and Mindsets

3= : i . B
*Ei . Multi-Core Centric - Many-Core Centric |

Multi-Core Hosted Symmetric

General purpose
serial and parallel
computing needs

Offload '

Codes with highly-
parallel phases

Many-Core Hosted
Codes with balanced

Highly-parallel codes

Multi-core

(Xeon)
Main( ) Main( )
_ Foo( ) Foo( )
Many-core MP'_*( ) MPL*( )

(MIC)
Range of models to meet application needs

Copyright© 2014, Intel Corporation. All righ
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Examples o

C/C++ Offload Pragma
#pragma offload target (mic)

#pragma omp parallel for reduction(+:pi)
for (i=0; i<count; i++) {
float t = (float) ((i+0.5)/count);
pi += 4.0/(1.0+t*t);
}

pi /= count;

MKL Implicit Offload

//MKL implicit offload requires no source code changes,
simply link with the offload MKL Library.

MKL Explicit Offload
#pragma offload target (mic) \

in(transa, transb, N, alpha, beta) \
in(A:length(matrix_elements)) \
in(B:length(matrix_elements)) \
in(C:length(matrix_elements)) \

out(C:length(matrix_elements)alloc_i1t(0))
sgemm(&transa, &transb, &N, &N, &N, &alpha,
A, &N, B, &N, &beta, C, &N);

- Ll D | || | TSR

- _Cilk_spawn obj2.process();
e L B e T =1 13 0 MMk

Fortran Offload Directive
1dir$ omp offload target(mic)

I1$omp parallel do

do i1=1,10
A(1) = B(1) * C(iI)
enddo

I1$omp end parallel

C/C++ Lanquage Extensions

class _Shared common {

int datal;
char *data2;
class common *next;
void process();
}:
’ _Shared class common objl, obj2;

B

e _Cilk_spawn _Offload objil.processQ);
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Your code will benefit from running on
Xeon Phi if ...

e It is highly parallel

o |s effectively vectorised

or DANAwidth

constrained




Three things to consider
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Three components to consider PP
P — the parallel part of the program - - I o
S —the serial part of the program ;55 E .
B — the bandwidth constrained part of the program  + § g c A\
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The Parallel, Vector and Clock Fa

Parallel Factor =
Num Xeon Cores / Num Phi Cores

16/ 61 = 0.26229 x5.38

Vector Factor = Faster
( Xeon Vector Length * Xeon Instruction Level Parallelism ) / (SSE2)

(Phi Vector Length * Phi Instruction Level Parallelism )

AVX-FMA** 4*2/8%2 =.5

AVX-non-FMA 4*2/8%1 =1 FMA**

SSE-FMA** 2*2/8%*2 =25

SE-non-FIMA 2+%2/8%1 =.5 X2.68

Faster

Clock Factor =
Xeon Frequency / Phi Frequency
3.1/1.09 = 2.844
Non-FMA
Combined = Parallel Factor * Vector Factor * Clock factor X2.68
AVX-FMA** 0.26229 *.5 *2.844 = 0.373 Faster

AVX-non-FMA 026229 * 1 *2.844 = 0.746

SSE-FMA** 0.26229 *.25 *2.844 = 0.157

SSE-non-FMA 0.26229 *.5 *2.844 = 0.373
NB we are comparing 2 socket SNB with Non-FMA
single coprocessor (64 bit floating point doubles) x1.34

** FMA:source code is capable of using FMA when built for Xeon Phi

Faster

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice



The Serial Factor

Serial Factor =

i Clock Factor * ILP Factor * Issue Factor
Where
Clock Factor = 2.6 /1.09
*%
e e For FMA type calculations FMA
= 2 ILP Factor** = 2/2 =1 x4.77
2 © slower
— o For non-FMA type calculations
S = W ILP Factor = 2/1
®
o ® ®
Q X
Q Issue factor =
() Num cycles to issue instruction on Phi /
o . . .
Q Num cycles to issue instruction on Xeon
® = 2/1
Non-FMA
_ | Note: in single threaded code Xeon Phi uses x9.54
two cycles to issue an instruction
(in threaded mode it takes just one cycle) slower

Y Y ** FMA: source code is capable of using Fused Multiple Add

when built for Xeon Phi
Xeon Xeon Phi

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice



Factors (2.6 GHz Clock)
E_EMM

Single socket

FMA**
Single socket ~ AVX 1 0.1333
2.6 GHz SSE2 9944 0.5
No FMA
: 2.386
Twin socket AVX 0.5
FMA** 0.2666
Twin socket AVX 1
2.6 GHz SSE2 9944 0.5
No FMA
Xeon: 8 cores per socket Phi: Using 60 of 61 cores

** FMA: source code is capable of using FMA when built for Xeon Phi
NOTE: Serial Factor already includes the Clock factor
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‘Finger in the air’ speedups
( from 2 socket 2.6Ghz SSE?2)

An application that is highly parallel and
effectively vectorised - speed up x2.5

An application that is highly parallel but not
vectorised - speed up x1.3

An application that is not parallel but

is vectorised - slow down by x1.5

A Serial application - slow down by x12.0

A Bandwidth constrained application - speed
up by x2.4

What you experience in practice may be different from these figures.
These are only ‘back of the envelope’ figures.




Xeon Phi
optimisation
work usually Is
of benefit to

‘regular’ Xeon
CPU codes.

1 ﬂa i same C++ code

Performance, voxels/second

UNOPTIMIZED OPTIMIZED

Dual-socket Intel Xeon E5-2670 CPU (16 cores total)
VErsus
||"ItE'| Xeon Phl L110P CDl][DCESSD[ {5{] Eﬂ[ES} See configuration information at end of

slide deck
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KNL Public Knowledge

« Knights Landing is the code name for the 2" generation
product in the Intel® Many Integrated Core Architecture

* Knights Landing targets Intel’s 14 nanometer
manufacturing process

« Knights Landing will be productized as a processor
(running the host OS) and a coprocessor (a PCle end-
point device)

« Knights Landing will feature on-package, high-
bandwidth memory

* Flexible memory modes for the on package memory
include: flat, cache, and hybrid modes

* Intel® Advanced Vector Extensions AVX-512




Typical Hands-on Xeon Phi
training agenda

Day 1 — Getting Ready 25th & 2@th
10.00 Welcome

10.30 Two Essential Requirements June 2014
11.00 Parallelism (L) Manchester
12.30 Lunch

1.30 Vectorisation (L)
4.00 Advance Profiling (Walkthrough)
5.00 End

Day 2-Xeon Phi Programming

09.00 Start

09.15 Native & Offload Programming for Xeon Phi (L)
11.30 A Case Study

12.00 Lunch

1.00 Vectorisation on Xeon Phi (L)

1.50 Parallelism on Xeon Phi (L)

3.40 Wrap-up

4.00 End

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice



Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and Cilk are trademarks
of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Copyright®© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.
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