
Programming for
Intel® Xeon Phi™

Stephen Blair-Chappell, Intel

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

In this session, the ingredients for successful Xeon Phi ™
Programming are discussed. We look at a the experience and
results of porting an application to run on the Intel® Xeon
Phi™. We look at: What went well in the project; How difficult the
project porting was; Useful tips and tricks; A comparison of
performance on Xeon Phi™ and non-Xeon Phi™ platforms.

Essential Requirements for
Programming on the Intel® Xeon Phi™
Coprocessor.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

 Four Components
3

Composer
XE

• Compiler
• Libraries

Inspector XE
• Memory Errors
• Parallel Errors

Amplifier
XE

• Profiler

Intel® Parallel Studio XE

+ Advisor

• Intel® Composer XE
Use to generate fast, safe,
parallel code (C/C++, Fortran)

• Intel® VTune™ Amplifier XE
Find hotspots and bottlenecks in you
code.

• Intel® Inspector XE
Use to find memory and
threading errors

• Intel® Parallel Advisor
Use to model parallelism in your
existing applications

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

 Four Six Components
4

Composer XE
•Compiler
•Libraries

Intel MPI

Inspector XE
•Memory Errors
•Parallel Errors

Amplifier XE
•Profiler

Trace
Analyzer and

Collector

Intel® Cluster Studio XE

+ Advisor

• Intel® MPI
Industry standard message passing
interface library for parallelism
across clusters

• Intel® Trace Analyzer and
Collector (ITAC)
Examine runtime behaviour of programs
running on clusters.

• Intel® Composer XE
Use to generate fast, safe,
parallel code (C/C++, Fortran)

• Intel® VTune™ Amplifier XE
Find hotspots and bottlenecks in you
code.

• Intel® Inspector XE
Use to find memory and
threading errors

• Intel® Parallel Advisor
Use to model parallelism in your
existing applications

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel Confidential
5

4/11/2014

Code must be

 highly Parallel

 effectively Vectorised

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Application Performance: Intel® Xeon Phi™ Coprocessor

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions.
Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Source: Intel Measured results as of October 17, 2012 Configuration Details: Please reference slide speaker notes.
For more information go to http://www.intel.com/performance

* Xeon = Intel® Xeon® processor;
* Xeon Phi = Intel® Xeon Phi™ coprocessor

http://www.intel.com/performance

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice
7

On the graphs, bigger is better

Parallel

Vectorised

Vectorisation

8

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX2

2012

AES-NI

2009

SSE4.2

2008

SSE4.1

2007

SSSE3

2006

SSE3

2004

SSE2

2000

70 instr
Single-
Precision
Vectors
Streaming
operations

144 instr
Double-
precision
Vectors
8/16/32
64/128-bit
vector
integer

13 instr
Complex
Data

32 instr
Decode

47 instr
Video
Graphics
building
blocks
Advanced
vector instr

SSE

128 bit

1999

8 instr
String/XML
processing
POP-Count
CRC

7 instr
Encryption
and
Decryption
Key
Generation

AVX

256 bit

2011

~100 new
instr.
 ~300
legacy sse
instr
updated
256-bit
vector
3 and 4-
operand
instructions

Int. AVX
expands to
256 bit
Improved
bit manip.
fma
Vector
shifts
Gather

AVX-512

512 bit

2013

512-bit
vector
16 new
512-bit
registers
8 opmask
registers

128 Bit

256 Bit 512 Bit

SIMD
Enhancements

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

4th Generation Intel® Core™ processor family
Execution Units

Load Buffers, Store Buffers, Reorder Buffers,

Scheduler

LD

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4

LD

STA STA STD

ALU ALU ALU

JMP

L1 Data Cache

Allocate/Rename/Retire

SIMD/FP Shuf

SIMD ALU

FMA, FPADD/MUL FMA, FP MUL

SIMD MUL

FDIV

SSE ADD

SIMD ALU

Slow Int SIMD LOG Branch 2

0 63 127 255

Port 6 Port 7

STA

ALU

Prim. Branch

EU

Memory Control

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

W
ay

s
of

 In
se

rt
in

g
Ve

ct
or

is
ed

C

od
e

Assembler code (addps)

Vector intrinsic (mm_add_ps())

SIMD intrinsic class (F32vec4 add)

Compiler: Auto vect. hints (#pragma ivdep, …)

Programmer control

Ease of use

Compiler: Fully automatic vectorization

Cilk Plus Array Notation (a[:] = b[:] + c[:])

User Mandated Vectorization (SIMD Directive
 /OpenMP 4.0)

Manual CPU Dispatch (__declspec(cpu_dispatch …))

Use Performance Libraries (e.g. IPP and MKL)

Implicit

Explicit

Instruction
aware

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Overview of Writing Vector Code

Array Notation
A[:] = B[:] + C[:];

SIMD Directive

#pragma simd
for (int i = 0; i < N; ++i) {
 A[i] = B[i] + C[i];
}

Elemental Function
__declspec(vector)
float ef(float a, float b) {
 return a + b;
}

A[:] = ef(B[:], C[:]);

Auto-Vectorization
for (int i = 0; i < N; ++i) {
 A[i] = B[i] + C[i];
}

14
4/11/2014

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Explicit Vector Programming with
SIMD Pragma/Directive

Programmer asserts:

*p is loop invariant

A[] does not overlap with B[] or C[]
sum not aliased with B[] or C[]
sum should be treated as a reduction

Allow compiler to reorder for better vectorization

Vector code should be generated even if efficiency heuristic does not
indicate a gain in performance

15

#pragma omp simd reduction(+:sum)
for(i = 0; i < *p; i++) {
 A[i] = B[i] * C[i];
 sum = sum + A[i];
}

Explicit vector programming
lets you express what you mean!

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

16

How do I know if a loop is vectorised?

• -vec-report

> icl /Qvec-report MultArray.c
MultArray.c(92): (col. 5) remark: LOOP WAS VECTORIZED.

Qvec-report1 (default)
Qvec-report2
Qvec-report3
Qvec-report4
Qvec-report5
Qvec-report6

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Vec-report7

make CalcPi
OPTIONS="-vec-
report7" >

vec7.txt 2>&1

17

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice
18

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice
19

The feature is enabled in AXE 2013 Update 4

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Scalar and Packed Instructions

20

addss Scalar Single-FP Add

 single precision FP data

 scalar execution mode

addps Packed Single-FP Add

 single precision FP data

 packed execution mode

x4 x3 x2 x1

y4 y3 y2 y1

x4 x3 x2 x1 + y1

x4 x3 x2 x1

y4 y3 y2 y1

x4 + y 4 x3 + y3 x2 + y2 x1 + y1

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

8/2/201
2

static double A[1000], B[1000],
 C[1000];
void add() {
 int i;
 for (i=0; i<1000; i++)
 if (A[i]>0)
 A[i] += B[i];
 else
 A[i] += C[i];
}

Examples of Code Generation
.B1.2::
 movaps xmm2, A[rdx*8]
 xorps xmm0, xmm0
 cmpltpd xmm0, xmm2
 movaps xmm1, B[rdx*8]
 andps xmm1, xmm0
 andnps xmm0, C[rdx*8]
 orps xmm1, xmm0
 addpd xmm2, xmm1
 movaps A[rdx*8], xmm2
 add rdx, 2
 cmp rdx, 1000
 jl .B1.2

.B1.2::
 movaps xmm2, A[rdx*8]
 xorps xmm0, xmm0
 cmpltpd xmm0, xmm2
 movaps xmm1, C[rdx*8]
 blendvpd xmm1, B[rdx*8], xmm0
 addpd xmm2, xmm1
 movaps A[rdx*8], xmm2
 add rdx, 2
 cmp rdx, 1000
 jl .B1.2

.B1.2::
 vmovaps ymm3, A[rdx*8]
 vmovaps ymm1, C[rdx*8]
 vcmpgtpd ymm2, ymm3, ymm0
 vblendvpd ymm4, ymm1,B[rdx*8], ymm2
 vaddpd ymm5, ymm3, ymm4
 vmovaps A[rdx*8], ymm5
 add rdx, 4
 cmp rdx, 1000
 jl .B1.2 AVX SSE4.1

SSE2

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

8/2/201
2

Vectorization Report

– “Existence of vector
dependence”

– “Non-unit stride used”

– “Mixed Data Types”

– “Condition too Complex”

– “Condition may protect
exception”

– “Low trip count”

– “Subscript too complex”

– ‘Unsupported Loop Structure”

– “Contains unvectorizable
statement at line XX”

– “Not Inner Loop”

– "vectorization possible but
seems inefficient"

– “Operator unsuited for
vectorization”

“Loop was not vectorized” because:

e.g. function
calls

Parallelism

23

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Speedup using parallelism Parallel Code

In
sp

ec
to

r
X

E

M
em

or
y

Th
re

ad
s

Debug

co
n

cu
rr

en
cy

Tune

A
m

pl
ifi

er
 X

E

Lo
ck

s
&

 w
ai

ts

A
m

pl
ifi

er
 X

E

H
ot

sp
ot

Analyze
E

B
S

 (X
E

 o
n

ly
)

Four Step Development

C
om

po
se

r
X

E
 Compiler

Libraries

Implement

MKL

Cilk Plus

TBB

OpenMP

IPP

1
2

3

4

Find the Hotspots

Implement
Parallelism

Check for Errors

Tune Parallelism

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Language to help parallelism

25
8/2/2012

Parallel Code

cilk_for (int i = 0; i < max_row; i++)
{
 for (int j = 0; j < max_col; j++)
 {
 p[i][j] = mandel(complex(scale(i), scale(j)));
 }
}

#pragma omp parallel for
for(i=1;i<=4;i++) {
 printf(“Iter: %d”, i);
}

Intel® Cilk™ Plus

 OpenMP

 Intel® Threading Building Blocks

 Intel® MPI

 Fortran Coarrays

 OpenCL

 Native Threads

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

How many threads ?
“An application must scale well past
one hundred threads to qualify as
highly parallel”

 Jim Jeffers
James Reinders.

 ISBN: 978-0124104143

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Parallel Performance Potential

If your performance needs
are met by a an Intel
Xeon® processor, they will
be achieved with fewer
threads than on a
coprocessor

On a coprocessor:
 Need more threads to achieve

same performance

 Same thread count can yield
less performance

Intel Xeon Phi excels on highly parallel applications

Intel® Xeon Phi™

28

Intel® Xeon Phi™

29

In-order

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Xeon Phi™ Architecture Overview

30

Cores: 61 core s, at 1.1 GHz
in-order, support 4 threads

512 bit Vector Processing Unit
32 native registers

Reliability Features
 Parity on L1 Cache, ECC on memory

CRC on memory IO, CAP on memory IO

High-speed bi-directional
ring interconnect

Fully Coherent L2 Cache

8 memory controllers
16 Channel GDDR5 MC

PCIe GEN2

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Core Architecture Overview
60+ in-order, low power IA cores in a ring
interconnect

Two pipelines
 Scalar Unit based on Pentium® processors

 Dual issue with scalar instructions

 Pipelined one-per-clock scalar throughput

SIMD Vector Processing Engine

4 hardware threads per core
 4 clock latency, hidden by round-robin scheduling of

threads

 Cannot issue back to back inst in same thread

Coherent 512KB L2 Cache per core

31

Ring

Scalar
Registers

Vector
Registers

512K L2 Cache

32K L1 I-cache
32K L1 D-cache

Instruction Decode

Vector
Unit

Scalar
Unit

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Key Differentiators
Xeon Phi vs Workstation

More Cores
 Slower Clock Speed
 Wider SIMD registers
 Faster Bandwidth
 In-order pipeline

32

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Multicore

Intel® Xeon® processor Intel® Xeon Phi™ Coprocessor

Sockets 2 1

Clock Speed 2.6 GHz 1.1 GHz

Execution Style Out-of-order In-order

Cores/socket 8 Up to 61

HW Threads/Core 2 4

Thread switching HyperThreading Round Robin

SIMD widths 8SP, 4DP 16SP, 8DP

Peak Gflops 692SP, 346DP 2020SP, 1010DP

Memory Bandwidth 102GB/s 320GB/s

L1 DCache/Core 32kB 32kB

L2 Cache/Core 256kB 512kB

L3 Cache/Socket 30MB none

A Tale of Two Architectures

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Theoretical Peak Flops Performance
Example

Frequency * Num Sockets * Num Cores * Vector Width * FP Ops

34

Freq Sockets Num
Cores

Vector
Width

FP Ops GFlops

2.6 2 8 4 2 666

Freq Sockets

Num
Cores

Vector
Width

FP Ops GFlops

1.091 1 61 16 2 (using FMA) 2,128

Single card Xeon Phi Coprocessor (B0)

Two socket Intel® Xeon® E5-2670 Processor

x3.20

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

640

1,729

1,860

0

500

1000

1500

2000

E5-2670
Baseline

(2x 2.6GHz, 8C,
115W)

5110P
(60C,

1.053GHz,
225W)

SE10P (61C,
1.1GHz, 300W)

SGEMM (GF/s)

Synthetic Benchmark Summary (Intel® MKL)

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you
in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.
Source: Intel Measured results as of October 26, 2012 Configuration Details: Please reference slide speaker notes.
For more information go to http://www.intel.com/performance

Up to 2.9X

309

833
883

0

200

400

600

800

1000

E5-2670
Baseline

(2x 2.6GHz, 8C,
115W)

5110P (60C,
1.053GHz,

225W)

SE10P (61C,
1.1GHz, 300W)

DGEMM (GF/s)

303

722

803

0

200

400

600

800

1000

E5-2670
Baseline

(2x 2.7GHz, 8C,
115W)

5110P (60C,
1.053GHz,

225W)

SE10P (61C,
1.1GHz, 300W)

SMP Linpack
(GF/s)

78

159

174

0

50

100

150

200

E5-2670
Baseline

(2x 2.6GHz, 8C,
115W)

5110P (60C,
1.053GHz,

225W)

SE10P (61C,
1.1GHz, 300W)

STREAM Triad
(GB/s)

Up to 2.8X Up to 2.6X Up to 2.2X
Higher is Better Higher is Better Higher is Better Higher is Better

85
%

 E
ffi

ci
en

t

86
%

 E
ffi

ci
en

t

82
%

 E
ffi

ci
en

t

82
%

 E
ffi

ci
en

t

71
%

 E
ffi

ci
en

t

75
%

 E
ffi

ci
en

t

EC
C

 O
n

EC
C

 O
n

Coprocessor results: Benchmark run 100% on coprocessor, no help from Intel® Xeon® processor host (aka native)

http://www.intel.com/performance

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel Confidential
36

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Range of models to meet application needs

Programming Models and Mindsets

37

Foo()
Main()
Foo()
MPI_*()

Main()
Foo()
MPI_*()

Main()
Foo()
MPI_*()

Main()
Foo()
MPI_*()

Main()
Foo()
MPI_*() Multi-core

(Xeon)

Many-core

(MIC)

Multi-Core Centric Many-Core Centric

Multi-Core Hosted
General purpose

serial and parallel
computing

Offload
Codes with highly-

parallel phases

Many-Core Hosted
Highly-parallel codes

Symmetric
Codes with balanced

needs

Xeon MIC

Software & Services Group, Developer Products Division
Copyright© 2012 Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Examples of Offloading

38

C/C++ Offload Pragma

#pragma offload target (mic)
#pragma omp parallel for reduction(+:pi)

for (i=0; i<count; i++) {

 float t = (float)((i+0.5)/count);

 pi += 4.0/(1.0+t*t);

}

pi /= count;

MKL Implicit Offload

//MKL implicit offload requires no source code changes,
simply link with the offload MKL Library.

MKL Explicit Offload

#pragma offload target (mic) \

 in(transa, transb, N, alpha, beta) \

 in(A:length(matrix_elements)) \

 in(B:length(matrix_elements)) \

 in(C:length(matrix_elements)) \

out(C:length(matrix_elements)alloc_if(0))
 sgemm(&transa, &transb, &N, &N, &N, &alpha,

 A, &N, B, &N, &beta, C, &N);

Fortran Offload Directive
!dir$ omp offload target(mic)

!$omp parallel do

 do i=1,10

 A(i) = B(i) * C(i)

 enddo

!$omp end parallel

C/C++ Language Extensions
class _Shared common {

 int data1;

 char *data2;

 class common *next;

 void process();

};

_Shared class common obj1, obj2;

…
_Cilk_spawn _Offload obj1.process();

_Cilk_spawn obj2.process();

…

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Back of the Envelope
Calculation

39

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Your code will benefit from running on
Xeon Phi if …

• It is highly parallel

• Is effectively vectorised

 or bandwidth
 constrained

40

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Three things to consider

Three components to consider
P – the parallel part of the program
S – the serial part of the program
B – the bandwidth constrained part of the program

41

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Compute bound

42

Parallel code
S

Serial Code

Serial Code

Xeon Xeon Phi

 Parallelism Vectorisation

 Parallelism Vectorisation

Serial Code

O
riginal speed

N
ew

 speed

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

The Parallel, Vector and Clock Factors

43

Parallel Factor =
 Num Xeon Cores / Num Phi Cores
 16 / 61 = 0.26229
Vector Factor =
(Xeon Vector Length * Xeon Instruction Level Parallelism) /
 (Phi Vector Length * Phi Instruction Level Parallelism)
 AVX-FMA** 4 * 2 / 8 * 2 = .5
 AVX-non-FMA 4 * 2 / 8 * 1 = 1
 SSE-FMA** 2 * 2 / 8 * 2 = .25
 SSE-non-FMA 2 * 2 / 8 * 1 = .5

Clock Factor =
 Xeon Frequency / Phi Frequency
 3.1/1.09 = 2.844

Combined = Parallel Factor * Vector Factor * Clock factor
 AVX-FMA** 0.26229 * .5 * 2.844 = 0.373
 AVX-non-FMA 0.26229 * 1 * 2.844 = 0.746
 SSE-FMA** 0.26229 * .25 * 2.844 = 0.187
 SSE-non-FMA 0.26229 * .5 * 2.844 = 0.373

FMA**
x2.68
Faster

(AVX)

Non-FMA

x1.34
Faster

(AVX)

NB we are comparing 2 socket SNB with
single coprocessor (64 bit floating point doubles)
** FMA:source code is capable of using FMA when built for Xeon Phi

FMA**
x5.38
Faster

(SSE2)

Non-FMA
X2.68
Faster

(SSE2)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

The Serial Factor

44
Serial Code

Xeon Xeon Phi

O
riginal speed

Serial Factor =
 Clock Factor * ILP Factor * Issue Factor
Where
 Clock Factor = 2.6 /1.09

 For FMA type calculations
 ILP Factor*** = 2/2 =1

 For non-FMA type calculations
 ILP Factor = 2/1

Issue factor =
 Num cycles to issue instruction on Phi /
 Num cycles to issue instruction on Xeon
 = 2/1

Note: in single threaded code Xeon Phi uses
two cycles to issue an instruction
(in threaded mode it takes just one cycle)

** FMA: source code is capable of using Fused Multiple Add
when built for Xeon Phi

Non-FMA

x9.54
slower

FMA**
x4.77
slower

Parallel code
S

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Factors (2.6 GHz Clock)

45

Host SIMD Serial Vector Parallel Clock
Single socket
2.6 GHz.
FMA**

AVX
4.772

0.5

0.1333

2.386

SSE2 0.25

Single socket
2.6 GHz
No FMA

AVX
9.544

1
SSE2 0.5

Twin socket
2.6 GHz
FMA**

AVX
4.772

0.5

0.2666

SSE2 0.25

Twin socket
2.6 GHz
No FMA

AVX
9.544

1
SSE2 0.5

Xeon: 8 cores per socket Phi: Using 60 of 61 cores

** FMA: source code is capable of using FMA when built for Xeon Phi
NOTE: Serial Factor already includes the Clock factor

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

‘Finger in the air’ speedups
(from 2 socket 2.6Ghz SSE2)
• An application that is highly parallel and

effectively vectorised - speed up x2.5
• An application that is highly parallel but not

vectorised - speed up x1.3
• An application that is not parallel but

is vectorised - slow down by x1.5
• A Serial application - slow down by x12.0
• A Bandwidth constrained application - speed

up by x2.4

46

What you experience in practice may be different from these figures.
These are only ‘back of the envelope’ figures.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Xeon Phi
optimisation

work usually is
of benefit to

‘regular’ Xeon
CPU codes.

See configuration information at end of
slide deck

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

KNL Public Knowledge

• Knights Landing is the code name for the 2nd generation
product in the Intel® Many Integrated Core Architecture

• Knights Landing targets Intel’s 14 nanometer
manufacturing process

• Knights Landing will be productized as a processor
(running the host OS) and a coprocessor (a PCIe end-
point device)

• Knights Landing will feature on-package, high-
bandwidth memory

• Flexible memory modes for the on package memory
include: flat, cache, and hybrid modes

• Intel® Advanced Vector Extensions AVX-512

48
8/2/2012

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Typical Hands-on Xeon Phi
training agenda
Day 1 – Getting Ready
10.00 Welcome
10.30 Two Essential Requirements
11.00 Parallelism (L)
12.30 Lunch
1.30 Vectorisation (L)
4.00 Advance Profiling (Walkthrough)
5.00 End

Day 2-Xeon Phi Programming
09.00 Start
09.15 Native & Offload Programming for Xeon Phi (L)
11.30 A Case Study
12.00 Lunch
1.00 Vectorisation on Xeon Phi (L)
1.50 Parallelism on Xeon Phi (L)
3.40 Wrap-up
4.00 End

25th & 26th
June 2014
Manchester

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and Cilk are trademarks
of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimer & Optimization Notice

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

50

Backup

51

	Programming for �Intel® Xeon Phi™
	Essential Requirements for Programming on the Intel® Xeon Phi™ Coprocessor. �
	 Four Components
	 Four Six Components
	Slide Number 5
	Application Performance: Intel® Xeon Phi™ Coprocessor
	Slide Number 7
	Vectorisation
	Slide Number 9
	Slide Number 10
	4th Generation Intel® Core™ processor family �Execution Units�
	Ways of Inserting Vectorised Code
	Overview of Writing Vector Code
	Explicit Vector Programming with SIMD Pragma/Directive
	Slide Number 16
	Vec-report7
	Slide Number 18
	Slide Number 19
	Scalar and Packed Instructions
	Slide Number 21
	Slide Number 22
	Parallelism
	Speedup using parallelism
	Language to help parallelism
	How many threads ?
	Parallel Performance Potential
	Intel® Xeon Phi™
	Intel® Xeon Phi™
	Intel® Xeon Phi™ Architecture Overview
	Core Architecture Overview
	Key Differentiators �Xeon Phi vs Workstation
	Slide Number 33
	Theoretical Peak Flops Performance Example
	Synthetic Benchmark Summary (Intel® MKL)
	Slide Number 36
	Programming Models and Mindsets
	Examples of Offloading
	Back of the Envelope �Calculation
	Your code will benefit from running on Xeon Phi if …
	Three things to consider
	Compute bound
	The Parallel, Vector and Clock Factors
	The Serial Factor
	Factors (2.6 GHz Clock)
	‘Finger in the air’ speedups�(from 2 socket 2.6Ghz SSE2)
	Xeon Phi optimisation work usually is of benefit to ‘regular’ Xeon CPU codes.
	KNL Public Knowledge
	Typical Hands-on Xeon Phi �training agenda
	Slide Number 50
	Backup
	Slide Number 52

