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Current industry standard CFD tools 
have limited capabilities



Our Motivation 
Our Motivation | Flux Reconstruction | Modern Hardware | PyFR | Results | Pathways to Impact

Technology is decades old and
designed for solving steady flow 

problems (using RANS approach)



Our Motivation 
Our Motivation | Flux Reconstruction | Modern Hardware | PyFR | Results | Pathways to Impact

Technology is decades old and
designed for solving steady flow 

problems (using RANS approach)



Our Motivation 
Our Motivation | Flux Reconstruction | Modern Hardware | PyFR | Results | Pathways to Impact

Need to expand the ‘industrial CFD 
envelope’
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[1] Murray Cross, Airbus, Technology Product Leader - Future Simulations (2012)
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• Flux Reconstruction (FR) approach to 
high-order methods was first 
proposed by Huynh in 2007 [3]

• High-order accurate in space

• Works on unstructured grids

[3] H. T. Huynh.  A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin 
Methods.  AIAA Paper 2007-4079. 2007
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• So ...

High Accuracy + Complex Geometry
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• FLOPS increasing faster than memory bandwidth [7]

[7] F. D. Witherden, A. M. Farrington, P. E. Vincent. PyFR: An Open Source Framework for Solving 
Advection-Diffusion Type Problems on Streaming Architectures using the Flux Reconstruction 
Approach.  Computer Physics Communications. 2014. Data courtesy of Jan Treibig. 
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• Also FLOPS come in parallel …
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• And, different programming languages for 
different devices …
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• So a challenging environment ...
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• But significant FLOPS now available if they can be 
harnessed …

2.91TFLOPS
(Double Precision)
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Governing Equations Compressible Euler
Compressible Navier Stokes

Spatial Discretisation
Arbitrary order FR on mixed 

unstructured grids (tris, quads, hexes, 
tets, prisms, pyraminds)

Temporal Discretisation Range of explicit Runge-Kutta schemes

Platforms
CPU clusters (C-OpenMP-MPI)

Nvidia GPU clusters (CUDA-MPI)
AMD GPU clusters (OpenCL-MPI)

Precision Single
Double

Input Gmsh

Output Paraview

• Features
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• Setup
• Distributed memory parallelism
• Outer ‘for’ loop and calls to 

Hardware Specific Kernels

Python Outer Layer
(Hardware Independent)

• Need to generate the Hardware Specific Kernels
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• Setup
• Distributed memory parallelism
• Outer ‘for’ loop and calls to 

Hardware Specific Kernels

Python Outer Layer
(Hardware Independent)

• Two types of kernel are required …

Matrix Multiply 
Kernels

Point-Wise 
Nonlinear Kernels

• Data 
interpolation/
extrapolation 
etc.

• Flux functions, 
Riemann 
solvers etc.
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• Setup
• Distributed memory parallelism
• Outer ‘for’ loop and calls to 

Hardware Specific Kernels

Python Outer Layer
(Hardware Independent)

• For matrix multiply kernels it is pretty easy …

Matrix Multiply 
Kernels

• Data 
interpolation/
extrapolation 
etc.

Use DGEMM from 
vendor supplied 

BLAS

Point-Wise 
Nonlinear Kernels

• Flux functions, 
Riemann 
solvers etc.
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• Website: www.pyfr.org

• Twitter: @PyFR_Solver

• Paper: Computer Physics Communications [8]

[8] F. D. Witherden, A. M. Farrington, P. E. Vincent. PyFR: An Open Source Framework for Solving 
Advection-Diffusion Type Problems on Streaming Architectures using the Flux Reconstruction 
Approach. Computer Physics Communications. 2014
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• 3D Taylor-Green vortex breakdown

• Compare with spectral DNS results of 
van Rees et al. [9]

[9] W. M. van Rees, A. Leonard, D.I. Pullin, and P. Koumoutsakos.  A Comparison of Vortex and Pseudo-Spectral 
Methods for the Simulation of Periodic Vortical Flows at High Reynolds Numbers. Journal of Computational 
Physics, 2011
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• Flow over a circular cylinder

• Re = 3900

• Ma = 0.2

• Compare with Parnaudeau et al. [10]

[10] P. Parnaudeau, J. Carlier, D. Heitz, E. Lamballais.  Experimental and Numerical Studies of the Flow Over a 
Circular Cylinder at Reynolds Number 3900.  Physics of Fluids. 2008
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• Parnaudeau et al. experiment + Parnaudeau et al. LES

u̅(
1.

54
,y

)

-0.5

0

0.5

1

1.5

y

-2 -1 0 1 2



Results
Our Motivation | Flux Reconstruction | Modern Hardware | PyFR | Results | Pathways to Impact

u̅(
1.

54
,y

)

-0.5

0

0.5

1

1.5

y

-2 -1 0 1 2

• Parnaudeau et al. experiment + PyFR 5th order



Results
Our Motivation | Flux Reconstruction | Modern Hardware | PyFR | Results | Pathways to Impact

• Flow over a NACA 0021 at 60 degree AoA

• Re = 270,000

• Ma = 0.2

• Compare with Swalwell and DESider [11][12]

[11] K. Swalwell. The Effect of Turbulence on Stall of Horizontal Axis Wind Turbines. PhD Thesis. 2005.
[12] W. Haase, M. Braza,  A. Revell. DESider A European Effort on Hybrid RANS-LES Modelling. 2009. 
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[12] W. Haase, M. Braza,  A. Revell. DESider A European Effort on Hybrid RANS-LES Modelling. 2009. 
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• Flow over a tandem cylinder and NACA 0012

• Re = 500,000

• Ma = 0.2
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• Flow over a wedge

• Ma = 1.34
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• 3D Navier-Stokes weak scaling on Piz Daint
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• 3D Navier-Stokes strong scaling on Piz Daint
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Questions

• Web: www.imperial.ac.uk/aeronautics/research/vincentlab

• Twitter: @Vincent_Lab

• Email: p.vincent@imperial.ac.uk

mailto:p.vincent@imperial.ac.uk

