
Exploring Deep, Hierarchical Pipelines
and High-level Synthesis on FPGAs:
Accelerating the Emanuel Convection Scheme

Kristian Hentschel, Waqar Nabi, Wim Vanderbauwhede

School of Computing Science, University of Glasgow



Introduction

I The research question:
Is it possible to efficiently port complete, large, sequential floating
point algorithms to FPGAs using a high-level programming
approach?

I The objectives:
I Create a complete, performant, efficient FPGA port of the Emanuel

convection kernel.
I Develop legacy code analysis strategy.
I Explore pipeline parallelism in terms of design patterns.



High-level FPGA Programming

I Best performance for FPGAs requires writing Verilog or VHDL.
I But there are now many high-level approaches, e.g. Maxeler,

OpenCL, Vivado, Leg-Up, ...
I We chose Maxeler for this particular work because we wanted to

explore the potential of the stream paradigm in detail.
I This work is part of a project to develop a compiler from legacy

scientific code to heterogeneous platforms, including FPGAs.



Typical FPGA Acceleration Approach

(Or at least, the sales pitch)
I Profile your code.
I Find the 10% of code that uses 90% of compute time.
I This will be a simple 10-line kernel!
I Put this on the FPGA using our magical tools;
I Success!



Real-world Algorithms ...

... are not like that

I Very complex (kernels are thousands of lines of code).
I Usually no quick wins.
I Parallelism is not obvious.



The Emanuel Convection Scheme



Convection Kernel Structure



Convection Kernel

I Each node is a complex computation over a set of arrays.
I Many and complex dependencies between the nodes.



Coarse Pipeline Design

I Loops are split into kernels
according to parallelism,
dimensions, and
dependencies.

I Coarse pipeline: columns are
streamed through stages as
shown

I Fine pipeline: arithmetic
inside each stage



Parallelism Patterns

Loop Kernels Ticks Pattern
16 16 n2 Map

16_diag 2 · n2 Diagonal Map
17 17_scrit n Map

17_asij 2 · n2 Row Reduce/Map
17_bsum 2 · n2 Row Reduce/Map
17_diag 3 · n2 Diagonal Map

18 18_wdtrain 15 · n2 Fold*
18_reverse_in 2 · n Reverse
18 440 · n Fold*
18_reverse_out 2 · n Reverse
18_precip 1 Scalar

19 19 12 · n Reduce
20 20 31 · n Reduce
21 21_fupfdown n3 Fold*

21_iflag 2 · n Reduce/Map
21_ftfq_1D n Map
21_fq_2D 2 · n2 Col Reduce/Map

22 22_map n Map
22_add 15 · n Reduce

23 23 n Map
24 24_fmass n2 Map

24_nconvtop 2 · n2 Reduce
24_sub n Map

I Map (also Diagonal Map)
I Reduce (also per-Row,

per-Column)
I Fold (more general)
I Scalar
I Utilities (Reverse, Input,

Output)



FPGA Resource Usage

For loops 16-24, accounting for about 40% of the algorithm.

0 10 20 30 40 50 60 70 80 90 100

FFs

BRAMs

LUTs

71.02

34.71

54.46

7.83

19.36

11.54

21.15

45.93

34

Utilisation by Kernels Manager Unused

Synthesised at 200MHz, for layers n = 32



Kernel Compute Time
vs Resource Usage



Performance Results

System power usage:
56W idle; 75W single cpu, 105W all cpus (openmp), 69W fpga running.
⇒FPGA board power usage: 13W.



Discussion

I These results are quite preliminary.
I Current FPGA implementation energy efficiency is already of the

same order as multicore CPU performance (16 J vs 27 J).
I Given the complexity of the algorithm, this is already a major

achievement.
I There is a lot of room for improvement in our current

implementation:
I We did not analyse the code for loop fusion or fission.
I We did not perform optimisations to simplify expressions and

reduce the number of expensive operations (div, exp, log,...).
I Buffer allocation is sub-optimal.
I We did not attempt to optimize FP representation.



Discussion

I Given the current resource utilisation, implementing the above
optimisations would likely allow to place at least two instances on
the FPGA.

I This would double the energy efficiency.
I In practice, the design space to explore is very large, so we are

working on an automated approach to program transformation.
I For more information, see http://www.tytra.org.uk

http://www.tytra.org.uk


The Future is Bright!

I A very promising development is the next generation FPGA
hardware with hardened floating-point units.

I Just appeared on the market!
I Considerable savings in resources,
I higher frequencies,
I better energy efficiency.

I This is the closest an FPGA device has come to the needs of the
HPC community.



Summary

I We ported a convection kernel from Fortran to FPGA,
significantly larger than most commonly seen algorithms.

I FPGAs now have the resources to represent complete
algorithms or applications.

I Even complicated loops can be decomposed into a small set of
recurring patterns.

I Coarse pipeline design can be used for sequential type
algorithms, but further optimisations need to be developed to
achieve good performance.

I The high-level programming approach is a huge improvement
over HDL, but as with any parallel platform, achieving good
performance is still very hard for non-experts.

I The results demonstrate the potential of FPGAs for acceleration
of scientific applications.


