

Accelerating performance of the HPC
electron collisions R-matrix code PFARM

 on the Xeon Phi

AG Sunderland(1), G Corbett(1), M Lysaght(2)
and M Plummer(1)

(1) Scientific Computing Department, STFC Daresbury

Laboratory, UK

(2) Novel Technologies Activity and the Intel Parallel
Computing Centre, ICHEC Dublin, Ireland

R-matrix Theory
•  Basis of computer programs that describe a wide range of atomic,

molecular and optical processes. Numerically very stable

•  Ab initio solution of full Schrodinger equation using CI

•  Successful in treating a wide range of collision phenomena

–  Scattering of electrons, positrons or photons with atomic and
molecular targets

–  Multiphoton interactions with atoms (and now/soon
molecules)

•  The PFARM code developed for atoms has recently been adapted
for molecular codes

•  Developed by CCP2/CCPQ. Optimization projects - dCSE, PRACE.
•  Real world applications include:

•  Astrophysics: stars, interstellar medium (shocks)
•  Atmospheres, atomic and molecular plasmas (nuclear fusion, laser-

produced plasmas, lighting)
•  radiation damage to DNA (electron collisions with DNA bases)

The R-matrix
method

• Configuration space divided into ‘inner’ and ‘outer’ regions by a sphere
• Inside: all electron (lepton) calculation, CI, exchange, spherical tensor algebra,
Hamiltonian formation and diagonalization (with non-vanishing orbitals on the
boundary)
• Outside: multipole potentials (from ‘inside’), coupled differential equations, propagation
to asymptotic region, possible frame transformations
• Inside: energy-independent; outside: energy-dependent

Partition of Configuration Space

The R-matrix
method

• Configuration space divided into ‘inner’ and ‘outer’ regions by a sphere
• Inside: all electron (lepton) calculation, CI, exchange, spherical tensor algebra,
Hamiltonian formation and diagonalization (with non-vanishing orbitals on the
boundary)
• Outside: multipole potentials (from ‘inside’), coupled differential equations, propagation
to asymptotic region, possible frame transformations
• Inside: energy-independent; outside: energy-dependent

Partition of Configuration Space

The parallelization of the code maps closely to this
partitioning

PFARM: external and asymptotic
regions

Baluja-Burke-Morgan (BBM)-based Implementation

2 Stage Parallelization of BBM approach in the external region:

–  EXDIG Program (Modern Fortran):

•  Diagonalize Sector Hamiltonian matrices using ScaLAPACK

PDSYEVD (Blacs-based Data decomposition).

–  EXAS Program (Modern Fortran):

•  For each scattering energy propagate using 3 functional groups:

•  Generate initial R-Matrix PDGEMM (Data decomposition).

•  Propagate R-Matrix across each sector in pipeline (Control

decomposition). DGEMM, DGETRF, DGEMM

•  Calculate thermally averaged collision strengths. Serial S.V.D.

(Task Farmed).

 EXAS Stage

Serial, OpenMP and MPI versions

a0
 a1
 an

Asymptotic
Region

External Region

Internal
Region

an-1
an-2

Parallel Diagonalizations of Large Symmetric Sector
Hamiltonian Matrices

 EXAS Stage

• Outer code PFARM, scales to 10000s of cores: now used with both atomic inner region
and UKRmol

•  full parallel diagonalization (ScaLAPACK), multiple MPI task propagation and
pipelining:

Optimized code – overall 150% performance improvement on 8132
cores (I/O and diag improvement)

Candidates for Offloading
•  Four dense linear algebra operations identified as

candidates for offloading to Xeon Phi:
–  Matrix Multiply in EXAS (dgemm)
–  Linear Solver in EXAS (dgetrf)
–  Singular Value Decomposition in EXAS (dgesvd)
–  Symmetric Eigensolver in EXDIG (dsyevd)

MKL & MAGMA
•  Intel® Math Kernel Library (MKL)

–  A library of highly optimized, extensively threaded math
routines including BLAS library, LAPACK,
ScaLAPACK, sparse solvers, Fast Fourier Transforms
library, vector math, and more.

•  Matrix Algebra on GPU and Multicore Architectures
(MAGMA)
–  similar to LAPACK but for heterogeneous/hybrid

architectures, starting with current "Multicore+GPU"
systems.

http://icl.cs.utk.edu/magma/index.html
https://software.intel.com/en-us/tools-for-math-processing

Offloading in MKL
•  Code with highly parallel

phases
•  Code runs on Xeon Host

until a sufficiently
computationally heavy
region reached

•  Data transfer to Phi and
execution runs there

•  Data transferred back to
Host

•  Auto or user defined

Image modified from:

• Slidecast 3/3 – PRACE Summer School on Code
Optimisation for Multi-Core and Intel MIC
Architectures – Workshop on MIC

• Intel MIC Architecture – Intel MIC HW/SW
Architecture

Offloading in MAGMA
•  Client/Server model
•  Server must be active on the

Phi before offloading can occur
•  Small non-parallelizable tasks

are scheduled on the host,
whilst larger, more
parallelizable tasks, (e.g. Level
3 BLAS), are scheduled on the
Intel Xeon Phi.

•  Unlike MAGMA-GPU, no
supplier-provided Fortran
interfaces

Image modified from:

• Slidecast 3/3 – PRACE Summer School on Code
Optimisation for Multi-Core and Intel MIC
Architectures – Workshop on MIC

• Intel MIC Architecture – Intel MIC HW/SW
Architecture

DGEMM Performance on Intel Xeon Phi

DL Xeon Phi co-processor SE10/7120
2x8 cores on Host
61 cores on Xeon Phi

DGETRF & DGESVD Performance on Intel
Xeon Phi

DL Xeon Phi co-processor SE10/7120
2x8 cores on Host
61 cores on Xeon Phi

EXAS matrices too small at present to gain
advantage form offloading DGETRF & DGESVD

DSYEVD (Eigensolver) Performance on Intel
Xeon Phi

DL Xeon Phi co-processor SE10/7120
2x8 cores on Host
61 cores on Xeon Phi

Performance of EXDIG with Xeon Phi
acceleration using MAGMA

The Xeon host calculations are run using MKL v 1.1
with 32 threads and the Xeon Phi MAGMA v1.1.0

calculations use 240 threads.

 EXAS Stage

EXAS on Xeon Phi

•  Matrices generally too small for effective offloading

•  Collapse a pipeline communicator and do the work for the
pipeline on the Phi (shared memory parallelism), hosts can
continue to run alongside use standard distributed pipelines
•  Replacement coding strictly localized with a clear interface to

the main code within the pipelining modules

•  Dominated by dense linear algebra operations. Originally
undertaken with MKL (serial, shared memory tasks,
distributed memory)

•  The new version of EXAS is fully heterogeneous, ie hosts and
Intel Phis perform separate work simultaneously

Schematic of original EXAS implementation for a single
pipeline (top) and schematic of new EXAS implementation
enabled for Fionn Xeon Phi machine (bottom)

Performance analysis of original implementation of
EXAS (left) and new implementation of EXAS on Xeon

Phi (right) using the Intel Trace Analyzer and Collector
(ITAC) profiler

Summary

•  Optimised Intel Xeon Phi port of PFARM (EXDIG) incorporating MAGMA
MIC for accelerated parallel eigensolvers. (~2x speed-up overall)

•  A new version of PFARM (EXAS), restructured for accelerated R-matrix

propagation pipelining. Tested and tuned on the Intel Xeon Phi and also
applicable to GPUs (M.L. expects speed-up once communication
bottlenecks reduced)

•  Detailed analyses of MKL and MAGMA MIC numerical library routines

performance on Intel Xeon Phi architectures.

•  EXAS undergoing further optimization: currently a host in one functional

group offloads to a Phi in another group with slow comms
•  Fully flexible MPI/OpenMP version – Distribute complete multiple functional

groups efficiently across Host/Phi, exploit OpenMP 4.0 task model
•  Preparation for Knights Landing
•  MAGMA MIC, MKL Offloading for PDGEMM (large rectangular matrices)

