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R-matrix Theory 
•  Basis of computer programs that describe a wide range of atomic, 

molecular and optical processes. Numerically very stable 

•  Ab initio solution of full Schrodinger equation using CI 

•  Successful in treating a wide range of collision phenomena 

–  Scattering of electrons, positrons or photons with atomic and 
molecular targets 

–  Multiphoton interactions with atoms (and now/soon 
molecules) 

•  The PFARM code developed for atoms has recently been adapted 
for molecular codes 

•  Developed by CCP2/CCPQ. Optimization projects - dCSE, PRACE. 
•  Real world applications include: 

•  Astrophysics: stars, interstellar medium (shocks) 
•  Atmospheres, atomic and molecular plasmas (nuclear fusion, laser-

produced plasmas, lighting) 
•  radiation damage to DNA (electron collisions with DNA bases) 

 



The R-matrix 
method 

• Configuration space divided into ‘inner’ and ‘outer’ regions by a sphere 
• Inside: all electron (lepton) calculation, CI, exchange, spherical tensor algebra, 
Hamiltonian formation and diagonalization (with non-vanishing orbitals on the 
boundary) 
• Outside: multipole potentials (from ‘inside’), coupled differential equations, propagation 
to asymptotic region, possible frame transformations  
• Inside: energy-independent; outside: energy-dependent


Partition of Configuration Space
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The parallelization of the code maps closely to this 
partitioning 



PFARM: external and asymptotic 
regions 

Baluja-Burke-Morgan (BBM)-based Implementation 

2 Stage Parallelization of BBM approach in the external region: 

–  EXDIG Program (Modern Fortran): 

•  Diagonalize Sector Hamiltonian matrices using ScaLAPACK 

PDSYEVD (Blacs-based Data decomposition).  

–  EXAS Program (Modern Fortran):  

•  For each scattering energy propagate using 3 functional groups: 

•  Generate initial R-Matrix  PDGEMM (Data decomposition). 

•  Propagate R-Matrix across each sector in pipeline  (Control 

decomposition). DGEMM, DGETRF, DGEMM  

•  Calculate thermally averaged collision strengths. Serial S.V.D.  

(Task Farmed). 

 



 EXAS Stage 

Serial, OpenMP and MPI versions
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Parallel Diagonalizations of Large Symmetric Sector 
Hamiltonian Matrices




 EXAS Stage 

• Outer code PFARM, scales to 10000s of cores: now used with both atomic inner region 
and UKRmol 

•  full parallel diagonalization (ScaLAPACK), multiple MPI task propagation and 
pipelining: 



Optimized code – overall 150% performance improvement on 8132 
cores (I/O and diag improvement)




Candidates for Offloading 
•  Four dense linear algebra operations identified as 

candidates for offloading to Xeon Phi: 
–  Matrix Multiply in EXAS (dgemm)  
–  Linear Solver in EXAS (dgetrf) 
–  Singular Value Decomposition in EXAS (dgesvd)  
–  Symmetric Eigensolver in EXDIG (dsyevd) 



MKL & MAGMA 
•  Intel® Math Kernel Library (MKL) 

–  A library of highly optimized, extensively threaded math 
routines including BLAS library, LAPACK, 
ScaLAPACK, sparse solvers, Fast Fourier Transforms 
library, vector math, and more. 

•  Matrix Algebra on GPU and Multicore Architectures 
(MAGMA) 
–  similar to LAPACK but for heterogeneous/hybrid 

architectures, starting with current "Multicore+GPU" 
systems. 

 
 
 
http://icl.cs.utk.edu/magma/index.html 
https://software.intel.com/en-us/tools-for-math-processing 



Offloading in MKL 
•  Code with highly parallel 

phases 
•  Code runs on Xeon Host 

until a sufficiently 
computationally heavy 
region reached 

•  Data transfer to Phi and 
execution runs there 

•  Data transferred back to 
Host 

•  Auto or user defined 
 
 

Image modified from:

• Slidecast 3/3 – PRACE Summer School on Code 
Optimisation for Multi-Core and Intel MIC 
Architectures – Workshop on MIC 

• Intel MIC Architecture – Intel MIC HW/SW 
Architecture







Offloading in MAGMA 
•  Client/Server model 
•  Server must be active on the 

Phi before offloading can occur 
•  Small non-parallelizable tasks 

are scheduled on the host, 
whilst larger, more 
parallelizable tasks, (e.g. Level 
3 BLAS), are scheduled on the 
Intel Xeon Phi.  

•  Unlike MAGMA-GPU, no 
supplier-provided Fortran 
interfaces 

Image modified from:

• Slidecast 3/3 – PRACE Summer School on Code 
Optimisation for Multi-Core and Intel MIC 
Architectures – Workshop on MIC 

• Intel MIC Architecture – Intel MIC HW/SW 
Architecture







DGEMM Performance on Intel Xeon Phi 

DL Xeon Phi co-processor SE10/7120 
2x8 cores on Host 
61 cores on Xeon Phi 



DGETRF & DGESVD Performance on Intel 
Xeon Phi 

DL Xeon Phi co-processor SE10/7120 
2x8 cores on Host 
61 cores on Xeon Phi 

EXAS matrices too small at present to gain 
advantage form offloading DGETRF & DGESVD




DSYEVD (Eigensolver) Performance on Intel 
Xeon Phi 

DL Xeon Phi co-processor SE10/7120 
2x8 cores on Host 
61 cores on Xeon Phi 



Performance of EXDIG with Xeon Phi 
acceleration using MAGMA 

The Xeon host calculations are run using MKL v 1.1 
with 32 threads and the Xeon Phi MAGMA v1.1.0 

calculations use 240 threads.  



 EXAS Stage 



EXAS on Xeon Phi  

•  Matrices generally too small for effective offloading 
 

•  Collapse a pipeline communicator and do the work for the 
pipeline on the Phi (shared memory parallelism), hosts can 
continue to run alongside use standard distributed pipelines 
•  Replacement coding strictly localized with a clear interface to 

the main code within the pipelining modules 

 

•  Dominated by dense linear algebra operations. Originally 
undertaken with MKL (serial, shared memory tasks, 
distributed memory) 

 

•  The new version of EXAS is fully heterogeneous, ie hosts and 
Intel Phis perform separate work simultaneously 



Schematic of original EXAS implementation for a single 
pipeline (top) and schematic of new EXAS implementation 
enabled for Fionn Xeon Phi machine (bottom) 



Performance analysis of original implementation of 
EXAS (left) and new implementation of EXAS on Xeon 

Phi (right) using the Intel Trace Analyzer and Collector 
(ITAC) profiler 



Summary 

•   Optimised Intel Xeon Phi port of PFARM (EXDIG) incorporating MAGMA 
MIC for accelerated parallel eigensolvers. (~2x speed-up overall) 

 
•  A new version of PFARM (EXAS), restructured for accelerated R-matrix 

propagation pipelining. Tested and tuned on the Intel Xeon Phi and also 
applicable to GPUs (M.L. expects speed-up once communication 
bottlenecks reduced) 

 
•  Detailed analyses of MKL and MAGMA MIC numerical library routines 

performance on Intel Xeon Phi architectures. 

 
•  EXAS undergoing further optimization: currently a host in one functional 

group offloads to a Phi in another group with slow comms 
•  Fully flexible MPI/OpenMP version – Distribute complete multiple functional 

groups efficiently across Host/Phi, exploit OpenMP 4.0 task model 
•  Preparation for Knights Landing 
•  MAGMA MIC, MKL Offloading for PDGEMM (large rectangular matrices) 

 


