

The Potential for Real-time Computational Fluid Dynamics via GPU acceleration

Alistair Revell

The University of Manchester

Overview

- GPU accelerated CFD
- Defining Realtime Simulation and its potential
- The numbers: a recent example and current status

Overview

- GPU accelerated CFD
- Defining Realtime Simulation and its potential
- The numbers: a recent example and current status

CFD on GPU

- The University
- Development of CFD algorithms on GPU
 - Originally driven by animating realistic physics
 - increasing application to particle based methods
- initial activity
 - appreciation of the challenge
 - difficulties porting codes
- approach changed
 - codes designed ground up
 - range of CFD methods
 - Pyfr, SPHysics, Sailfish
- renewed potential

Overview of LBM

Lattice Boltzmann Makes use of Statistical Mechanics

- In this room there are billions of molecules hitting us at speeds of order 400m/s!
- Do we feel them? Do we need to know the behaviour of each molecule?

- In LBM a collection of particles is represented by a distribution function
 - bridges scales by considering a collection of particles as a unit
- There are also some great advantages for GPU
 - Navier Stokes: non-linear and non-local
 - Lattice Boltzmann is linear and local
 - perfect for parallelization on many core architectures

The University

Gaming vs Physics (~15 years)

- Realism vs Accuracy
- Detail vs. Developing Intuition
- Cost, Speed & Convenience
- Potential for closer collaboration?

~1M cells steady RANS order 100 CPU hours

PhysX FleX instantaneous on a single GPU

STAR-CCM+ 300M cells IDDES order 100,000 CPU hours

Overview

- GPU accelerated CFD
- Defining Realtime Simulation and its potential
- The numbers: a recent example and current status

Defining Simulation Speed

- Game physics is instantaneous
 - Engineering Simulation is not!
- 'Realtime' has a clear definition
 - Interactive is open to interpretation

The University

Conventional vs Realtime CFD

- Typical CFD design has 2 loops
 - design loop
 - solution loop
- pre-processing main bottleneck
- bottlenecks also in data transfer
 - increasingly for larger calculations

- interactive CFD can have 1 loop
 - geometry modification, solution and visualization in a single loop
- various means of interacting
 - input devices, augmented reality
- data can't be saved/transferred
 - faster to view in situ

Human Systems

- Applications for Realtime simulations can fall into two categories
 - Humans in the loop

- Most obvious is creation of a virtual environment
 - e.g. for training
 - realtime is impotant
- But realtime isn't necessary for all applications
 - developing intuition, interactive design

he University f Manchester

Visualization output

A range of techniques available from GPU libraries

- Contour flood (of e.g. velocity magnitude)
- colormap is stored on GPU to speed up visualisation

simulates advection of particles through a flow field

Random noise Dye injection

Original mesh

Vectors from flow

Volume Rendering too:

- libraries exist from Nvidia
- e.g. Nicolas Delbosc's work at Univ. Leeds
- see his Youtube account:

The University

Kinect input: virtual windtunnel

- Input geometry can be obtained from any source
 - E.g. we demonstrate with a Microsoft Kinect (Mawson 2013)
 - Toolkit enables rapid integration with the flow solver

Kinect Fusion

Human Systems: examples

Teaching/Debugging tool

- Used currently in syllabus and in science fairs
- Provides direct understanding

Interactive Design concept

- Reduce design-engineer loop
- Modest aims at this stage

Surgical Training

- Geometry captured in advance
- force visualised in realtime

The University

Automated Systems

- Realtime is generally more important in these cases
 - Used as part of a environmental monitoring system
- Forecasting: Faster than Realtime
 - e.g. extremely local weather forecasting
 - Early warning system: predicting path of contaminant
- Ability to incorporate other sensors and 'autocorrect' simulation

he University f Manchester

Automated systems: examples

Work on Data centre cooling at Leeds

- identify need for different levels of cooling in realtime
- simulated flow at a Reynolds number of 10,000, using
 - LBM simulations on a single Tesla K40: 0.34 s per second
 - Fluent on a CPU server across 16 nodes: 7 minutes per second

Khan et al 2014, Building Simulation

Contaminant tracking

- potential to be used to track spread of contaminant/pollutant/fire
- in combination with other sensors

Flight Management

- use as a local wind speed prediction tool for drones
- sensing buildings
- combining with forecasts

Data reduction

 when detailed flow information is not required the challenge is to reduce/ extract meaningful data on the fly

Geometry capture

Interactive simulation (visualisation not needed)

Overview

- GPU accelerated CFD
- Defining Realtime Simulation and its potential
- The numbers: a recent example and current status

Discretisation of LBM

■ The LBE is discretised as follows:

$$f_i(r+c_i\Delta t,t+\Delta t)=f_i(r,t)+\frac{\Delta t}{\tau}[f_i^{\mathrm{eq}}(r,t)-f_i(r,t)]$$

- and is used together with a specific set of discrete velocities defined as
 - DnQm: for n dimensions and m discrete velocities
 - In our work we use

D3Q19

time loop

Algorithm

■ The algorithm for LBM can now be defined as follows

- 2. Compute equilibrium function
- 3. Collide
- 4. Stream
- 5. apply Boundary conditions
- 6. Compute Macroscopic values
- 7. Output data

The University of Manchester

LBM Validation - 1: Poiseuille flow

single precision

double precision

in DP memory limit hit before floating point error

LBM Validation - 2: LDC

2D Lid Driven Cavity

3D Lid driven Cavity

Centreline u profiles for Re=100,400 and 1000

The University of Manchester

Code optimised for GPU (Mawson 2013)

Feature	FK104 :K5000M	GK110: K20c
cores (SMX x cores/SMC)	1344 (7 x 192)	2496 (13 x 192)
regs / thread	63	255
DRAM	4GB	4.7GB
SP/DP ratio	24:1	3:1
Peak performance (single precision)	1.6 TFLOPS	3.5 TFLOPS
DRAM Bandwidth	66 GB/s (measured)	143 GB/s (measured)

Optimization steps

- fold arrays flat
- write arrays using f direction first and rely on 'un-coallesced' access
- Change algorithm order to reduce read/write of data during loop

PUSH

- initialise
- ▶2. compute forces
 - 3. compute $f^{(eq)}$
 - 4. collide (local)
 - 5. stream (non-local)
 - i.e. requires synchronisation
 - 6. impose bcs.
 - compute macroscopic quantities

University anchester

Overall performance-3D

- Peak 814MLUPS K20c; ~92% of bandwidth scaled performance
- For realtime CFD this means a resolution of 160³ at a refresh rate of 200fps
- Main limitation was on board memory
- Current hardware is a factor 2-3 faster with larger memory

Challenges for realtime

True realtime is > 24 frames/second

- so graphics output interval is 40ms
- Visualisation, used carefully and on board is not restrictive

Data output must be minimal

- 1000 MLUPS and higher, 1GB-1TB data can be generated per second
- e.g. from Delbosc (2015): for 1283 LDC the following are per iteration

1.4 ms	LBM
6.8 ms	GPU to CPU
1700 ms	write data (total 24GB / second)
0.1 ms	display results using OpenGL

LBM structure imposes limitations

- high numbers of registers in LBM (e.g. in 3D 19 pops, 4 macro + other integers)
- memory requirements also limit domain size on GPU
- new developments: e.g. Link-Wise Artificial Compressibility (Asinari, Obrecht)

Current status

numbers based on LDC calculations and classic scaling laws, also using results in the literature

Conclusions

'Realtime' CFD is on the horizon

- hardware in the loop, automated CFD analysis for predictive purposes
- currently up to Re~10⁴ for LES on a desktop with multiGPU

Use of interactive CFD is increasing

range of applications for virtual environments, learning, testing & design

Main focus has been on LBM

Many challenges remain: wall modelling, reduction of memory overhead

Acknowledgements

- UKCOMES: UK Consortium for Mesoscale Engineering Sciences (Grant No. EP/L00030X/1)
- Others at University of Manchester: George Lever, Adrian Harwood
- Dr. Mark Mawson, STFC
- Dr. Nic Delbosc, Dr Jon Summers (Univ Leeds)
- Dr. Christian Obrecht (Lyon)