

Luke Mason

Intel® Parallel Computing Center at Hartree Centre, STFC

Optimising DL_MESO for Intel Xeon
Phi

IPCC at Hartree Centre, STFC

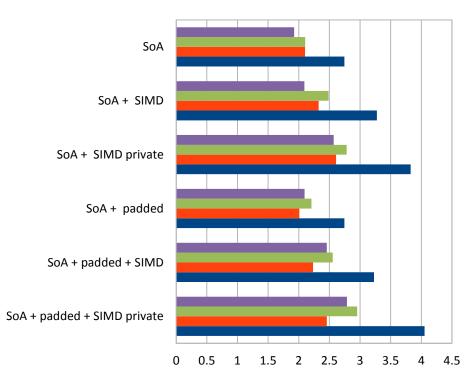
- •Intel funded code porting and modernisation project.
- In our second year.
- Intel's many core architectures (Xeon Phi) are main focus.
 - Knights Corner (KnC) is current generation.
 - Knights Landing (KnL) is the next generation.
 - Wide variety of codes.
 - DL_MESO.
 - Unified Model.
 - GungHo.
 - DualSPHysics.
 - ParaFEM.
 - OSPRay.

Knights Corner: System Specs

- Coprocessor.
 - PCI bus.
- C/C++/Fortran.
- MPI/OpenMF.
- Linux operating system.
- 6 16 GB cached GDDR5 RAM.
- 57 61 cores.
- Clock speed ~1GHZ.
- 4 Hardware threads per core.
- 512 bit vector unit.
- IMCI instruction set.

DL_MESO_LBE: Lattice Boltzmann

- Models fluids at mesoscale.
- Hybrid MPI/OpenMP running natively.
- Using compiler 16.0.042.
- Extension of Xeon tuning work performed with Vector Advisor.
- fGetEquilibriumF identified as hotspot
- Baseline characteristics
 - Double precision
 - Array of Structures (AoS) data storage.
 - No data alignment (prevented by data structure).
 - Low trip count loop (19).
 - Trip count is not a multiple of vector lengths.
 - Both Peel and remainder loops present.



DL_MESO_LBE: Enhanced Vectorization

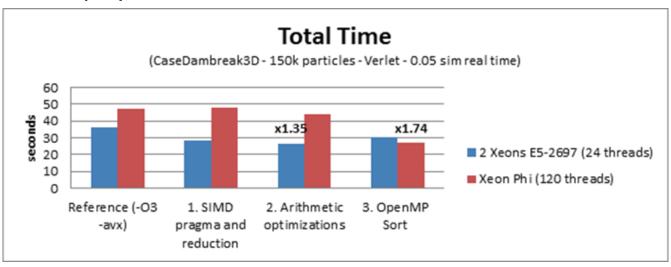
- Advisors recommendations
 - MAP analysis points to AoS -> SoA.
 - Pad arrays to avoid scalar remainders.
 - Align data accesses.
- AoS -> SoA allowed aligned access removing peel loops.
- Array padding and #pragma loop count removes remainder loops.
- Additional optimization
 - #pragma simd private
 - Allows additional compiler optimizations.
- Final loop speed up of 4.05 over base line performance.
- The same optimizations produced 2.95 speed up on Xeon

Performance of Loop optimisations

Speedup against baseline (unaligned AoS)

DL_MESO_LBE: Vectorization Insights

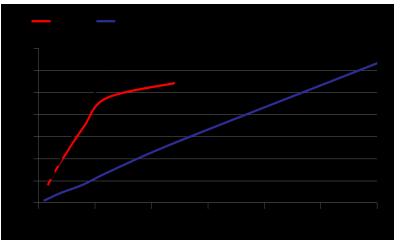
- AoS -> SoA transformation gave large gains on KnC, more so than on Xeon.
- Data alignment much more significant for KnC.
- In isolation array padding does not provide significant benefits on KnC.
 - Compiler has caught us up!
 - Remainder loop auto vectorization seems pretty effective.
 - This is not true on Xeon where manual padding is still required.
- When combined with simd private clauses and aligned access manual padding becomes worthwhile however.



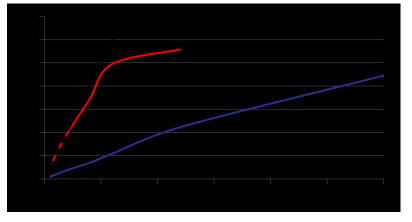
DualSPHysics: Parallel Particle Sort

- Optimisations applied.
 - SIMD pragma + reduction.
 - Arithmetic refinement.
 - OpenMP sort.

Still not fully optimised for KnC.



ParaFEM: MKL


- Exploring native performance on Xeon Phi
 - Hotspot is loop of matrix vector multiplications
 - The matrices are small 60x60
- Modifications to code so far:
 - Trialed different methods for the matrix-vector multiplies.
 - MKL Sequential BLAS was best.
 - Data alignment.
 - Streaming stores.

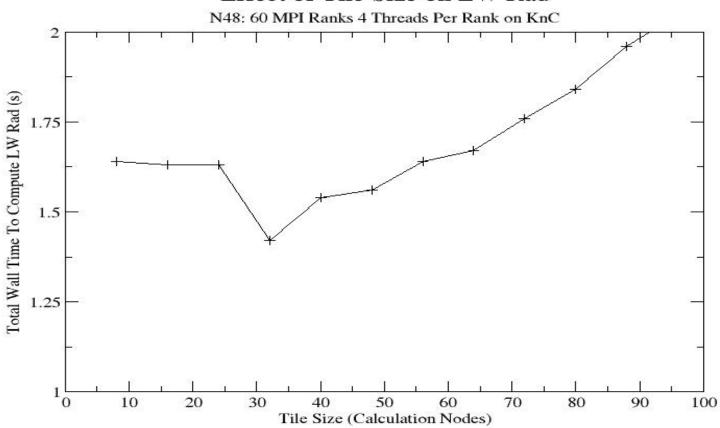
Hotspot scaling compared to 1 MPI rank on Xeon

MPI Ranks

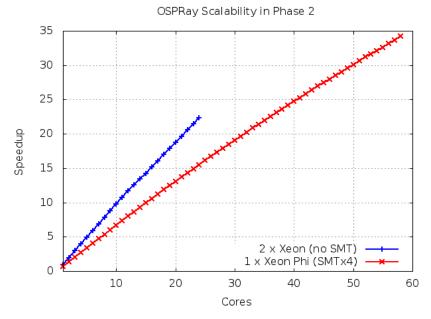
Solver scaling compared to 1 MPI rank on Xeon

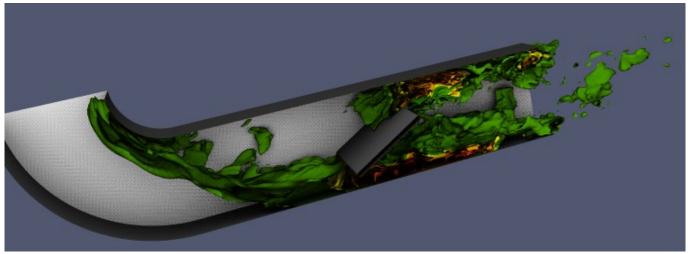
MPI Ranks

Unified Model: Cache Optimisation


- Calculation of Radiation performed at each grid point.
- Total grid points split into tiles.
- Additional outer loop over tiles required.
- Optimal tile size will depend on architecture.
- Solution time can be very sensitive to tile sizes.
- Aim is to provide optimal cache re-usage for the given problem.
- Tiling can aid vectorization.
 - Set tiling size to a multiple of vector width.

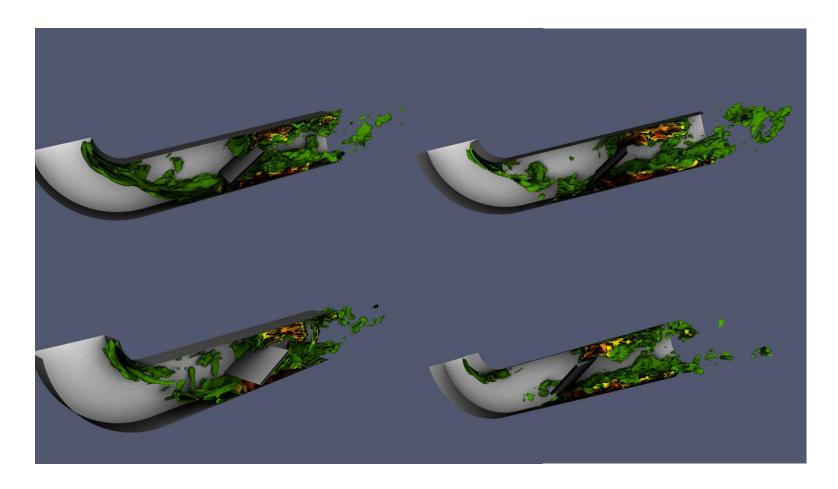
Unified Model: Tuning Results


Effect of Tile Size on LW Rad



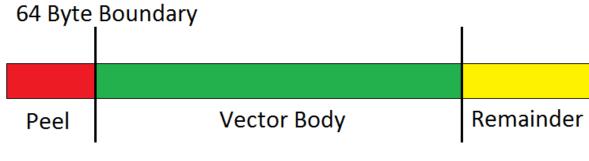
OSPRay: Ray tracing without GPU.

- Ray tracing built using Embree.
- Open source.
- Plugin for Paraview.
- Usable on CPUs and MICs (KnC).
- Integrated with iDataplex phase 2 systems.
- Enables rendering in our higher performance nodes that lack GPUs.



Summary

- KnC development boosts CPU performance.
- Codes need to be highly parallel.
- Optimisations discussed
 - SIMD performance.
 - Efficient arithmetic.
 - Threading.
 - Library usage.
 - Cache tuning.


Any Questions?

DL_MESO_LBE: Peel/Remainder Loops

- Loads from aligned memory locations produce best performance.
- Unaligned array access results in costly peel loops.
- Peel loop executed until alignment boundary is reached.
- If interation count is not a multiple of vector width scaler remainder loops can be generated.
- Padding arrays to a mulitple of vector width allows fully vectorised code.

