

Technology emerging from the DEEP & DEEP-ER projects

Estela Suarez

Jülich Supercomputing Centre

03.06.2016

The research leading to these results has received funding from the European Community's Seventh Framework Programme (*FP7/2007-2013*) under *Grant Agreement* n° 287530 and n° 610476

Topics

DEEP

- Cluster-E
- Software
- Programn
- Energy ef
- Applicatio
 - Co-desi
 - Evaluati
 - Code m

DEEP/-ER bring new

technologies in:

Hardware

and

Software

hierarchy ce <mark>I/O</mark>

ncy

nstration

Code modernisation

CLUSTER-BOOSTER ARCHITECTURE

"Standard" heterogeneity

Flat topology
Simple management of resources

Static assignment of accelerators to CPUs Accelerators cannot act autonomously

** Cluster-Booster architecture

Flexible assignment of resources (CPUs, accelerators)
Direct communication between accelerators
"Offload" of large and complex parts of applications

DEEP Architecture

DEEP System

- Installed at JSC
- 1,5 racks
- 500 TFlop/s peak perf.
- 3.5 GFlop/s/W
- Water cooled

Cluster (128 Xeon)

Booster (384 Xeon Phi KNC)

Booster main components

Node Card

Interface Card

Booster measurements

MPI Linktest: ping-pong

length_of_message:	1048576 bytes (1024.00 KBytes)	number_of_tasks:	384
number_of_messages:	25	Execution order:	Serial
Alltoall:	1	Mixing PE rank:	No
Min Value:	398.5us (2509.40 MB/s)	Alltoall Min Value:	616.1us (1 Byte)
Max Value:	2757.6us (362.63 MB/s)	Alltoall Max Value:	5038.0us (1 Byte)
Avg Value:	814.9us (1227.12 MB/s)	Alltoall Avg Value:	795.lus (1 Byte)

Report generated by FZJ Linktest Result Analyzer, Forschungszentrum Juelich GmbH

Booster measurements

MPI Linktest: ping-pong

length_of_message:1048576 bytes (1024.00 KBytes)number_of_tasks:384number_of_messages:40Execution order:SerialAlltoall:0Mixing PE rank:No

Min Value: 779.4us (1283.02 MB/s)
Max Value: 845.1us (1183.24 MB/s)
Avg Value: 792.7us (1261.47 MB/s)

Stddev < 10%

MPGGP-GR Network EXTOLL Tourmalet

Tourmalet PCI Express Board

Tourmalet Chip and Wafer

Main EXTOLL characteristics

- Direct network: no switches required
- Integrates network interface controller
- Supports 6+1 links
- Capable of tunneling PCIe (allows remote-booting KNC from the network)

Current (A3) **version of EXTOLL ASIC**

- 270 million transistors
- Link bandwidth: 100 G
- MPI latency: 850 ns
- MPI bandwidth: 8.5 GB/s
- Message rate: 70 million mgs/sec
- PCle Gen3 x16

GreenICE system

Alternative Booster implementation

- Interconnect EXTOLL ASIC "Tourmalet"
- 32 KNC-node system
- Implement 4×4×2 topology, with Z dimension open

2-phase immersion cooling

- NOVEC liquid from 3M
- Evaporates at about 50 degrees
- Condensates again in a water cooling pipe
- Allows very high-density integration

GreenICE Booster

MPI performance Latency

MPI performance Bandwidth

Factor of 3× achieved by EXTOLL TOURMALET (5Gbit/s version A2)

DEEP Architecture

DEEP-ER Architecture Innovation

DEEP-ER Aurora Blade prototype

Eurotech's Aurora technology Direct water cooled, high density

Aurora Blade DEEP-ER Booster (in construction)

Aurora Blade Chassis

19 inch

NVMe

EXTOLL Tourmalet

MPGGP-GR Network Attached Memory

NAM architecture

- Xilinx Virtex 7 FPGA
- Hybrid Memory Cube (HMC)
 - Bandwidth HMC↔FPGA: 40+ GByte/s
 - HMC Conrtroler: Open source development
- Attached to TOURMALET NIC

libNAM (libc based) for ease of use

Use cases:

- global (shared) storage
- compute node for an X-OR C/R app
- "active memory", etc.

NAM Board

SOFTWARE

PGGP-GR Programming environment

OmpSs on top of MPI provides pragmas to ease the offload process

**Cluster-Booster Protocol

Application running on DEEP

Source code

Compiler

Application binaries

DEEP Runtime

```
int main(int argc, char *argv[]){
   /*···*/
   for(int i=0; i<3; i++){
       #pragma omp task in(...) out (...) onto (com, size*rank+1)
        foo_mpi(i, ...);}}
                    OmpSs Compiler
      Cluster
                                           Booster
                                          Executable
    Executable
                 ParaStation Global MPI
                 DEEP Runtime
Cluster MPI
                                             Booster MPI
                    OmpSs Runtime
```

IN DEEP Offload (with OmpSs)

Performance & Scalability evaluation

FWI (full wave inversion) code

Scalable I/O

- Improve I/O scalability on all usage-levels
- Used also for checkpointing

Filesystem

- Two instances:
 - Global FS on HDD server
 - Cache FS on NVM at node
- API for cache domain handling
 - Synchronous version
 - Asynchronous version

Resiliency

 Develop a hierarchical, distributed checkpoint/restart mechanism leveraging DEEP-ER architecture

APPLICATIONS

Application-driven approach

DEEP+DEEP-ER applications:

- Brain simulation (EPFL)
- Space weather simulation (KULeuven)
- Climate simulation (Cyprus Institute)
- Computational fluid engineering (CERFACS)
- High temperature superconductivity (CINECA)
- Seismic imaging (CGG)
- Human exposure to electromagnetic fields (INRIA)
- Geoscience (LRZ Munich)
- Radio astronomy (Astron)
- Oil exploration (BSC)
- Lattice QCD (University of Regensburg)

Goals:

- Co-design and evaluation of architecture and its programmability
- Analysis of the I/O and resiliency requirements of HPC codes

Cluster-Booster Advantages

More flexible than a standard architecture

- → This enables different use models:
 - 1. Dynamic ratio of processors/coprocessors
 - 2. Use Booster as pool of accelerators (globally shared)
 - 3. Discrete use of the Booster
 - 4. Discrete use + I/O offload
 - 5. Specialized symmetric mode

Enables a more efficient use of system resources

- Only resources actually needed are blocked by applications
- Dynamic allocation further increases system utilization

Code optimisations

BSC: Enhancing Oil Exploration (FWI, wave propagator)

1 XeonPhi (60 cores), 180 OpenMP threads

Using SIONlib

LRZ: Rapid crustal deformation & earthquake source equation (Seisol)

1 process per node, 16 threads per process writing 20 checkpoint files (4GB/checkpoint)

Using NVMe

Inria: Assessment of Human exposure to EM fields

24 MPI processes, 1 thread per process

Increasing model precision P1<P2<P3<P4

DEEP/-ER Emerging Technologies

Cluster-Booster Architecture:

- Alternative approach to heterogeneity
- High flexibility enabling various use modes

Hardware components:

- Booster (new kind of cluster of accelerators)
- GreenICE Booster (2-phase immersion cooling)
- EXTOLL network tested at scale
- Warm-water cooling
- Memory hierarchy based on NVM
- Network Attached Memory

DEEP/-ER Emerging Technologies

Software

- Cluster-Booster Protocol: low-level communication protocol between different high-speed networks
- Programming environment for future heterogeneous systems
- ParaStation Global MPI supporting EXTOLL and CBP
- OmpSs extensions for DEEP Offload
- Resiliency extensions for OmpSs (task recovery) and ParaStation
- BeeGFS extension for local caches (on NVM)
- SIONIib extensions for buddy-checkpointing, integration with SCR and use of BeeGFS functionality
- E10 scalability optimisations for MPI-I/O
- Extrae/Paraver support for DEEP Offload
- Applications modernisation and optimisation

DEEP and DEEP-ER

EU-Exascale projects

20 partners

Total budget: 28,3 M€

EU-funding: 14,5 M€

Nov 2011 - Mar 2017

Visit us @ ISC'16, Frankfurt (Germany) 20.-22.06.2016

- -Booth #1340
- -BoF #11
- -Workshop

