
Analysing the Impact of Parallel

Programming Models in NoCs of

Forthcoming CMP Architectures

Iván Pérez1, Emilio Castillo2,3, Ramón Beivide1, Enrique Vallejo1

José Luis Bosque1, Miquel Moretó2,3, Marc Casas2,3 and Mateo Valero2,3

1 Universidad de Cantabria

2 Barcelona Supercomputing Center

3 Universitat Politècnica de Catalunya

Outline

• Introduction

• CMP Architectures

• Parallel Programming Models

• Objectives

• Methodology

• Results

• Conclusions

EMiT 2016 2

Introduction – Current Multiprocessors

• Currently there are CMPs with near a hundred of cores.

• The communication between cores is done sharing a level

of cache that is distributed in banks among tiles of the CMP:
Non-Uniform Cache Architecture (NUCA).

• Networks on Chip (NoCs) connects private caches with the
shared NUCA banks and memory controllers.

• Examples of CMPs with a large number of cores are:

TILE-Gx8072 TILE-MX Knight Landing

EMiT 2016 3

Introduction - Parallel Programing Models

• A parallel programming model must provide
efficiency in terms of development in addition to
good performance.

• We compare two parallel programming models:

• Posix threads (pthreads) which is based on threads. This
model requires strict synchronization mechanism
between threads to ensure correctness.

• OmpSs that is a dataflow task programming model.
Work units are tasks that are synchronized by data
dependencies. It has a runtime (Nanos++) that tracks
dependencies and schedules task executions.

EMiT 2016 4

Introduction – Objectives

• Evaluate both programming models in next-generation CMP
architectures.

• Analyse the impact of both programming models in the NoC
utilization. Two NoC topologies are considered:

• Traditional 2D mesh: Typical NoC topology, widely used.

• Complete graph: Best-case, unrealistic implementation.

• Only 1 hop between routers.

• Requires huge routers (large port count).

EMiT 2016 5

mesh Complete graph

Methodology - Environment and Configuration

• We use gem5 to simulate 64 x86 core systems, with two levels of
cache.

• The L2 cache is a 64 bank shared NUCA.

• Three Parsec benchmarks: Blackscholes, Bodytrack and Ferret

EMiT 2016 6

Results - Execution time

EMiT 2016 7

• Programming models:
• Negligible difference in Blackscholes.

• Huge speedup in the applications that use thread pools.

• Network topologies:
• Huge impact in the system performance.

• In some cases pthreads has higher sensitivity to the network performance.

< 3%

1.64x

1.69x

2.19x

2.40x

1.11x 1.48x

1.43x

1.41x

1.29x

1.09x

Relating Programming Models with NoC Utilization

• The programming model influences on:

• Number of executed load/stores

• Miss rates: data locality

• The number of executed load/stores and miss rates
determine the L1 and L2 misses which, in turn,
determine the network load (injected flits).

• Network performance depends on:

• Injection rate: injected flits per core per unit time

• Latencies:

• Injection latency

• Network latencies (average network distance)

EMiT 2016 8

Results - Memory accesses and miss rates

EMiT 2016 9

• Distribution of Loads/Stores
(64 cores):

• 10% lower in Blackscholes

• 45% and 21% bigger in
Bodytrack and Ferret.

• Less variability (except in
Blackscholes) so the load
is better balanced

• L1 data miss rate:

• 3% and 7% lower miss
rates for Bodytrack and
Ferret respectively.

• Better exploit of locality.

Results – Injected Flits and Injection Rate

EMiT 2016 10

Results - NoC latencies

EMiT 2016 11

Zero Load

Latency

Ideal

Conclusions and Future Work

• Conclusions:

• OmpSs clearly outperforms pthreads.

• The impact of the NoC in the system performance is significant:
between 1.09 and 1.48 of speedup can be achieved in the
experiments comparing complete graph vs mesh.

• The most important network parameter is the average distance
which will determine the zero load latency.

• OmpSs stresses more the network (higher injection rates). This can
lead in a higher sensitivity to the NoC design.

• Ongoing work:

• Detailed evolution of statistics along time in order to characterize
NoC traffic.

• Evaluation on concentrated meshes.

EMiT 2016 12

Results - Execution time

EMiT 2016 13

1.43x

Bodytrack

EMiT 2016 14

Injected flits along time

EMiT 2016 15

Pthreads OmpSs

Analysing the Impact of Parallel

Programming Models in NoCs of

Forthcoming CMP Architectures

Iván Pérez1, Emilio Castillo2,3, Ramón Beivide1, Enrique Vallejo1

José Luis Bosque1, Miquel Moretó2,3, Marc Casas2,3 and Mateo Valero2,3

1 Universidad de Cantabria

2 Barcelona Supercomputing Center

3 Universitat Politècnica de Catalunya

Methodology - Workloads

• Three PARSEC benchmarks are executed via simulations:

• Blackscholes: embarrassing parallel application.

• Bodytrack: parallelization on 5 kernels synchronized by barriers.

• Ferret: parallelization based on a 6-stage pipeline.

EMiT 2016 17

Benchmark Input set

Blackscholes 1,048,576 options

Bodytrack 2 frame, 2,000 particles

Ferret 64 queries, 13,787

Workloads - Blackscholes

• Embarrassing parallel
application.

• Pthreads divides the load
by the number of the
available threads.

• OmpSs increases the
granularity in order to
improve load balance.

EMiT 2016 18

Workloads - Bodytrack

• There are 5 parallel kernels in
pthreads. The
implementation uses thread
pools and barriers at the end
of each kernel to control the
data flow. Each frame is
processed secuencially.

• OmpSs reduces the
granularity fusing the 3
kernels of the first stage. In
addition the tasks of all
frames are created as soon as
possible adding the possibility
of execute concurrently tasks
of different frames.

EMiT 2016 19

Workloads - Ferret

• Pthreads implements a
pipeline of 6-stages using
thread pools.

• OmpSs implementation is
very similar to the pthreads
one. As soon as a queried
image is found all the tasks
of the pipeline for that
query are created.

EMiT 2016 20

