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Introduction - Parallel Programing Models UC
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* A parallel programming model must provide
efficiency in terms of development in addition to
good performance.

* We compare two parallel programming models:

* Posix threads (pthreads) which is based on threads. This
model requires strict synchronization mechanism
between threads to ensure correctness.

* OmpSs that is a dataflow task programming model.
Work units are tasks that are synchronized by data
dependencies. It has a runtime (Nanos++) that tracks
dependencies and schedules task executions.
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Introduction — Objectives UC
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e Evaluate both programming models in next-generation CMP
architectures.

e Analyse the impact of both programming models in the NoC
utilization. Two NoC topologies are considered:
* Traditional 2D mesh: Typical NoC topology, widely used.

* Complete graph: Best-case, unrealistic implementation.
* Only 1 hop between routers.
* Requires huge routers (large port count).

mesh Complete graph
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Methodology - Environment and Configuration
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* We use gemb5 to simulate 64 x86 core systems, with two levels of

cache.

e The L2 cache is a 64 bank shared NUCA.
 Three Parsec benchmarks: Blackscholes, Bodytrack and Ferret
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Parameter Value
CPU units 64
CPU [SA x86
W 03
PU frequency 100 MHz - 2 GHz
~Ruby frequency 1 GHz
Co MESI /
Memory controllers 16

DRAM | | DRAM | | DRAM DRAM | | DRAM DRAM

_Network model 5-stage Garnet router
 Topology 8x8 mesh and 64 complete graph
1r 3
Virtual channels per VN | 1
Buffers per port 10 flits
Flit size 16 B
Block size 64 B
Message control size 8B
L1I Size - 32 KB —
L ‘ 64 KB
<’Ll Latency 1 Ruby cycle
N2 Size 64 banks of 512 KB /
L2 Taremeie 15 Ruby cvcles —
DRAM type DDR3-1600
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Results - Execution time UC
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* Programming models:
* Negligible difference in Blackscholes.
* Huge speedup in the applications that use thread pools.

* Network topologies:
* Huge impact in the system performance.
* In some cases pthreads has higher sensitivity to the network performance.
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Relating Programming Models with NoC Utilization UC
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* The programming model influences on:
 Number of executed load/stores
* Miss rates: data locality

 The number of executed load/stores and miss rates
determine the L1 and L2 misses which, in turn,
determine the network load (injected flits).

* Network performance depends on:
* Injection rate: injected flits per core per unit time

* Latencies:
* Injection latency
* Network latencies (average network distance)
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Results - Memory accesses and miss rates
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e Distribution of Loads/Stores

(64 cores):
* 10% lower in Blackscholes

* 45% and 21% bigger in
Bodytrack and Ferret.

* Less variability (except in
Blackscholes) so the load
is better balanced

e L1 data miss rate:

* 3% and 7% lower miss
rates for Bodytrack and
Ferret respectively.

» Better exploit of locality.
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Results — Injected Flits and Injection Rate UC

UNIVERSIDAD
DE CANTABRIA

I8 Complete Graph - pthreads I 0 Complete Graph - OmpSs
In  8x8 Mesh - pthreads BB 8x8 Mesh - OmpSs

108

” 6
~—
. —
=
b 4
3
~
2
i 2

0
blackscholes bodytrack ferret
—~ i
=
a2 3
%
S
5
S— 2
8
<
—
g !
2y
&
2
= 0
blackscholes bodytrack ferret

EMIT 2016 10



Results - NoC latencies UC
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Conclusions and Future Work UC
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* Conclusions:
* OmpSs clearly outperforms pthreads.

* The impact of the NoC in the system performance is significant:
between 1.09 and 1.48 of speedup can be achieved in the
experiments comparing complete graph vs mesh.

 The most important network parameter is the average distance
which will determine the zero load latency.

* OmpSs stresses more the network (higher injection rates). This can
lead in a higher sensitivity to the NoC design.

* Ongoing work:

* Detailed evolution of statistics along time in order to characterize
NoC traffic.

* Evaluation on concentrated meshes.
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Results - Execution time UC
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Injected flits along time
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 Three PARSEC benchmarks are executed via simulations:
* Blackscholes: embarrassing parallel application.
* Bodytrack: parallelization on 5 kernels synchronized by barriers.
* Ferret: parallelization based on a 6-stage pipeline.

Benchmark Input set

Blackscholes 1,048,576 options
Bodytrack 2 frame, 2,000 particles
Ferret 64 queries, 13,787
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Workloads - Blackscholes UC
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* Embarrassing parallel
application. Pthreads OmpSs

* Pthreads divides the load . \:Task Pool
by the number of the l; -
available threads. S

* OmpSs increases the
granularity in order to
improve load balance.
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Workloads - Bodytrack UC
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. Pthreads OmpSs
 There are 5 parallel kernels in
Thread Pool Task Pool

pthreads. The
implementation uses thread — l l
pools and barriers at the end })r«umberaf) >>~umMro>

of each kernel to control the e i
data flow. Each frame is )) )
processed secuencially. e

* OmpSs reduces the m_>_t>,3arr,er___
granularity fusing the 3 ))
kernels of the first stage. In = Barrier - ~——Barrier - - -
addition the tasks of all .
frames are created as soon as f) o
possible adding the possibility ))Ba”'er ) i
of execute concurrently tasks L arior < _ L rior - -
of different frames. \Endlﬁame >

Barrier Barrier
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Workloads - Ferret UC

UNIVERSIDAD
DE CANTABRIA

] Pthreads OmpSs
e Pthreads implements a Load T Pool Task Pool

pipeline of 6-stages using
thread pools.
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* OmpSs implementation is
very similar to the pthreads
one. As soon as a queried
image is found all the tasks
of the pipeline for that
query are created.
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