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Introduction – Current Multiprocessors

• Currently there are CMPs with near a hundred of cores.

• The communication between cores is done sharing  a level 

of cache that is distributed in banks among tiles of the CMP:
Non-Uniform Cache Architecture (NUCA).

• Networks on Chip (NoCs) connects private caches with the 
shared NUCA banks and memory controllers.

• Examples of CMPs with a large number of cores are:

TILE-Gx8072 TILE-MX Knight Landing
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Introduction - Parallel Programing Models

• A parallel programming model must provide 
efficiency in terms of development in addition to 
good performance.

• We compare two parallel programming models:

• Posix threads (pthreads) which is based on threads. This 
model requires strict synchronization mechanism 
between threads to ensure correctness.

• OmpSs that is a dataflow task programming model. 
Work units are tasks that are synchronized by data 
dependencies. It has a runtime (Nanos++) that tracks 
dependencies and schedules task executions.

EMiT 2016 4



Introduction – Objectives

• Evaluate both programming models in next-generation CMP 
architectures.

• Analyse the impact of both programming models in the NoC
utilization. Two NoC topologies are considered:

• Traditional 2D mesh: Typical NoC topology, widely used.

• Complete graph: Best-case, unrealistic implementation.

• Only 1 hop between routers.

• Requires huge routers (large port count).
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Methodology - Environment and Configuration

• We use gem5 to simulate 64 x86 core systems, with two levels of 
cache.

• The L2 cache is a 64 bank shared NUCA.

• Three Parsec benchmarks: Blackscholes, Bodytrack and Ferret
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Results - Execution time
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• Programming models:
• Negligible difference in Blackscholes.

• Huge speedup in the applications that use thread pools.

• Network topologies:
• Huge impact in the system performance.

• In some cases pthreads has higher sensitivity to the network performance.
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Relating Programming Models with NoC Utilization

• The programming model influences on:

• Number of executed load/stores

• Miss rates: data locality

• The number of executed load/stores and miss rates 
determine the L1 and L2 misses which, in turn, 
determine the network load (injected flits).  

• Network performance depends on:

• Injection rate: injected flits per core per unit time

• Latencies:

• Injection latency

• Network latencies (average network distance)
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Results - Memory accesses and miss rates
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• Distribution of Loads/Stores 
(64 cores):

• 10% lower in Blackscholes

• 45% and 21% bigger in 
Bodytrack and Ferret.

• Less variability (except in 
Blackscholes) so the load 
is better balanced

• L1 data miss rate:

• 3% and 7% lower miss 
rates for Bodytrack and 
Ferret respectively.

• Better exploit of locality.



Results – Injected Flits and Injection Rate
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Results - NoC latencies
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Conclusions and Future Work

• Conclusions:

• OmpSs clearly outperforms pthreads.

• The impact of the NoC in the system performance is significant: 
between 1.09 and 1.48 of speedup can be achieved in the 
experiments comparing complete graph vs mesh.

• The most important network parameter is the average distance 
which will determine the zero load latency.

• OmpSs stresses more the network (higher injection rates). This can 
lead in a higher sensitivity to the NoC design.

• Ongoing work:

• Detailed evolution of statistics along time in order to characterize 
NoC traffic.

• Evaluation on concentrated meshes.
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Results - Execution time
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Injected flits along time
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Methodology - Workloads

• Three PARSEC benchmarks are executed via simulations:

• Blackscholes: embarrassing parallel application.

• Bodytrack: parallelization on 5 kernels synchronized by barriers.

• Ferret: parallelization based on a 6-stage pipeline.
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Benchmark Input set

Blackscholes 1,048,576 options

Bodytrack 2 frame, 2,000 particles

Ferret 64 queries, 13,787



Workloads - Blackscholes

• Embarrassing parallel 
application.

• Pthreads divides the load 
by the number of the 
available threads.

• OmpSs increases the 
granularity in order to 
improve load balance. 
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Workloads - Bodytrack

• There are 5 parallel kernels in 
pthreads. The 
implementation uses thread 
pools and barriers at the end 
of each kernel to control the 
data flow. Each frame is 
processed secuencially.

• OmpSs reduces the 
granularity fusing the 3 
kernels of the first stage. In 
addition the tasks of all 
frames are created as soon as 
possible adding the possibility 
of execute concurrently tasks 
of different frames.
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Workloads - Ferret

• Pthreads implements a 
pipeline of 6-stages using 
thread pools.

• OmpSs implementation is 
very similar to the pthreads
one. As soon as a queried 
image is found all the tasks 
of the pipeline for that 
query are created.
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